
i x ,

\

PARALLEL ALGORITHMS FOR PLACEMENT AND ROUTING
IN VLSI DESIGN

BY

RANDALL JAY BROUWEFI

B.S., Calvin Colle._e, 1985
M.S., University of Ilhnois, 1988

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
Univemity of Illinois at Urbana-Champaign, 1991

Urbana, Illinois

PARALLEL ALGORITHMS FOR PLACEMENT AND ROUTING
IN VLSI DESIGN

BY

RANDALL JAY BROUWER

B.S., Calvin College, 1985
M.S., University of Illinois, 1988

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1991

Urbana, Illinois

ii__.,, ul _¢iaki.i li.iiU
PRECEDING PAGE BLArJ_KNOT F{LMED

.°.

III

PARALLEL ALGORITHMS FOR PLACEMENT AND ROUTING IN VLSI DESIGN

Randall J. Brouwer, Ph.D.
Department of Electrical and Computer Engineering

University of Illinois, Urbana-Champaign, 1991

The computational requirements for high quality synthesis, analysis, and verification

of VLSI designs have rapidly increased with the fast growing complexity of these

designs. Research in the past has focused on the development of heuristic algorithms,

special purpose hardware accelerators, or parallel algorithms for the numerous design

tasks to decrease the tirn,e required for solution. In this thesis, we propose two new

parallel algorithms for two VLSI synthesis tasks, standard cell placement and global

routing.

The first algorithm, a parallel algorithm for global routing, uses hierarchical tech-

niques to decompose the routing problem into independent routing subproblems that are

solved in parallel. Results are then presented which compare the routing quality to the

results of other published global routers and which evaluate the speedups attained.

The second algorithm, a parallel algorithm for cell placement and global routing,

hierarchically integrates a quadrisection placement algorithrr{, a bisection placement

algorithm, and the previous global routing algorithm. Unique partitioning techniques are

used to decompose the various stages of the algorithm into independent tasks which

can be evaluated in parallel. Finally, we present results which evaluate the various algo-

rithm alternatives and compare the algorithm performance to other placement programs,

and we present measurements on the parallel speedups available.

iv

DEDICATION

TO: Janine

ACKNOWLEDGEMENTS

V

I would like to thank most of all my advisor, Professor Prithviraj Banerjee, for his

constant advice, support, and encouragement throughout my work on this project. I

would also like to thank the other members of my thesis committee for not only their

comments and suggestions on my work, but also their flexibility in scheduling the vari-

ous examinations. I am thankful to the professors in the Center for Reliable and High-

Performance Computing for the excellent facilities to which I have had access.

There are too many other students and staff members with whom I have worked

that have been great sources of help, encouragement, and enjoyment to list here, but I

would like to specifically mention my past and present officemates who survived sharing

an office with me and let me bounce ideas off them: Ralph Kling, A.LN. Reddy, Mike

Peercy, and Kaushik De.

Finally, I would like to express my appreciation to my wife, Janine, for her endless

love and support, and my parents, in-laws, relatives, and friends for all of their

encouragement throughout my studies.

vi

TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION

1.1.

1.2.

1.3.

ooooo°..oo.o,ooo..°o.°o °..°.°°o.o..°°.o.oo.°o.ooo.......o.°.° °.....

Parallel Processing for CAD ..

Parallel Processing Architectures ..

Thesis Outline ...

2. CELL PLACEMENT AND GLOBAL ROUTING PROBLEMS

2°1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

PAGE

1

1

3

5

. PARALLEL GLOBAL ROUTING ... 20

3.1. Global Routing Model .. 20

3.1.1. Feedthrough insertion and channel width expansion 25

3.1.2. Hierarchical decomposition .. 26

3.1.2.1. Maximal boundary determination 26

7

Introduction ... 7

Row-Based Layouts ... 7

Uniprocessor Cell Placement Algorithms ... 9

Parallel Cell Placement Algorithms .. 11

Uniprocessor Global Routing Algorithms ... 14

Parallel Global Routing Algorithms .. 16

Combined Placement and Routing Algorithms 17

Parallel Combined Placement and Routing Algorithm 19

.

3.2.

3.3.

3.4.

3.5.

3.1.2.2. Minimal boundary determination

Parallel Algorithm Overview ..

3.2.1. Exploitation of coarse-grained parallelism

3.2.1.1. Maximal boundary determination

3.2.1.2. Minimal boundary determination

3.2.2. Exploitation of fine-grained parallelism

3.2.3. Task complexity ...

3.2.4. Experimental results on 2X2 routing task complexity

Implementation ..

Results ..

Conclusions ...

PARALLEL PLACEMENT AND ROUTING ...

4.1. Overview ...

4.2. Floorplanning Step ..

4.3. Placement and Routing ...

4.3.1. Quadrisection-based placement ..

4.3.2. Routing of the quadrisection ..

4.3.3. Initial placement for quadrisection ..

4.3.3.1. The X-dimension restricte,J global bisection

4.3.3.2. The Y-dimension restricted global bisection

4.3.3.3. Combining X- and Y-dimension bisectioning

4.3.4. Two-by-N global routing ...

vii

28

31

32

32

33

35

37

39

42

44

46

48

48

49

5O

51

60

61

61

64

64

66

,

4.4.

4.5.

4.6.

4.7.

Algorithm Outline ...

Detailed Routing ..

Parallelisms and Algorithm Complexities ...

4.6.1. Complexity evaluation ..

Results ..

4.7.1.

4.7.2.

4.7.3.

4.7.4.

4.7.5.

4.7.6.

4.7.7.

4.7.8.

4.7.9.

Implementation ..

Benchmark circuits ..

Evaluation of net cost function ...

Evaluation of initial placement by global bisection

Evaluation of cell swapping ..

Route-based placement evaluation ..

Comparison to TimberWolf 5.4 ..

Process efficiency ..

Speedup evaluation ...

CONCLUSIONS ..

5.1. Contributions ...

5.2. Future Directions

REFERENCES ...

°o°

VIII

66

72

72

73

77

77

8O

8O

82

82

83

84

86

89

91

91

91

93

VITA .. 97

ix

LIST OF TABLES

Table

3,1.

3.2.

3.3.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

Page

Routing quality comparison ... 44

Uniprocessor runtime comparison ... 45

Parallel algorithm results ... 46

Benchmark statistics ... 80

Comparison of net cost parameters ... 81

Initial placement alternatives comparison .. 82

Effect of cell swapping ... 83

Route-based vs. standard cost functions ... 83

Comparison to TimberWolf .. 84

Process efficiency measurements ... 87

Speedup measurements ... 89

X

LIST OF FIGURES

Figure

1.1,

1.2.

1.3.

1.4.

1.5.

2.1.

2.2.

2.3.

2.4.

2.5.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

Page

The Hipercad Project overview .. 2

Multiple Instruction-Multiple Data multiprocessors ... 3

Distributed-memory multiprocessor ... 4

Shared-memory multiprocessor ... 4

Single Instruction-Multiple Data multiprocessors ... 5

Example of a gate array design ... 8

Example of a standard cell design ... 10

Wire length estimation by bounding box .. 11

Cell congestion estimation by net cut count ... 12

The global routing model ... 14

Routing block model .. 20

(a) Axes capacities of 2x2 bin array (b) Example .. 22

Net types and possible routings ... 23

Maximal boundary determination ... 27

Example of maximal boundary determination .. 29

Minimal boundary determination .. 30

Plot of projected speedup vs. number of processes 35

Percentage of tasks in startup phase .. 36

3.9. Net setup time vs. iteration number ...

3.10. LP solution time vs. iteration number ...

3.11. Net assignment time vs. iteration number ..

3.12. Total time vs. iteration number ..

3.13. Parallel global routing flowchart ...

4.1. Overview of the placement and routing algorithm ..

4.2. Determination of layout block array ...

4.3. Min-cut partitioning ..

4.4. Quadrisection-based partitioning ...

4.5. Partition and cut lines for different quadrisection levels

4.6. Simple quadrisection net cost function ..

4.7. Improved quadrisection net cost function ..

4.8. Quadrisection gain tables ..

4.9. Gain table data structure ...

4.10. Partitioning for X-dimension restricted global bisection

4.11. Bisection cost function example ..

4.12. Y-dimension restricted global bisection ...

4.13.Two-by-N routing of a bisection region ..

4.14. Placement and routing decomposition ...

4.15. Decomposition example ..

4.16. Parallel placement and routing pseudocode ..

4.17. Execution time percentages ..

xi

39

40

41

42

43

49

5O

51

53

54

55

56

57

58

62

63

65

67

68

7O

79

88

CHAPTER 1.

INTRODUCTION

1.1. Parallel Processing for CAD

In view of the increasing complexity of very large scale integrated circuits (VLSI),

there is a growing need for sophisticated computer-aided design (CAD) tools to auto-

mate the synthesis, analysis, and verification steps in the design of VLSI systems.

Although the increased performance of today's processors has helped, there are

still many tasks in VLSI CAD which continue to take a long time to finish. A recent

approach to handling the problem's complexity and decreasing the running time of such

tasks has been to apply parallel processing [1]. The advantages of parallel processing

include: the ability to solve larger problems sizes, the ability to achieve high-quafity

results, and the availability of low-cost mu/tiprocessors. Some of the tasks in the

automatic design of integrated circuits which have been solved with parallel processing

include the following: floor planning [2], circuit extraction [3, 4], circuit simulation [5, 6],

logic simulation [7], and test generation/fault simulation [8]. The above results have

demonstrated the wide variety of CAD applications that can be solved with parallel pro-

cessing. However, it has also become very clear that parallel algorithm design is very

difficult.

The research presented in this thesis is a small part of a larger project called the

"HIPERCAD Project" (High PERformance CAD environment) at the Center for Reliable

2

and High-performance Computing at the University of Illinois. An outline of the project is

shown in Figure 1.1. The goal of this project is to develop parallel algorithms for solving

each of the tasks in the design and testing of integrated circuits. The tasks in bold type

are the subject of this thesis.

HIPERCAD

m

PROJECT

P1 P2 --- Pm

\ j Gernl_e_lpPr_rPs°Ser

SYNTHESIS STATIC DYNAMIC

TOOLS ANALYSIS TOOLS ANALYSIS TOOLS

1. Silicon Compilers

2. Cell Generators

3. Floorplanning

4. Cell Placement

5. Global Routing

6. Detailed Routing

1. Circuit Extraction

2. Design Rule Checking

3. Design Verification

4. Test Generation

1. Circuit Simulation

2. Switch Simulation

3. Logic Simulation

4. Behavioral Simulation

5. Fault Simulation

Figure 1.1. The Hipercad Project overview

3

1.2. Parallel Processing Architectures

There are many considerations in the development of a parallel algorithm for a

given application. One of the most important factors is the type of parallel architecture

that is to be used. MIMD (Multiple Instruction-Multiple Data) architectures allow each

processor to be executing different instruction streams (IS), independent of what the

other processors are executing. The MIMD architecture is shown in Figure 1.2. Two

subclasses of MIMD multiprocessors are the distributed-memory and the shared-

memory types. Distributed-memory multiprocessors can be scaled relatively easily to

large numbers of processors; however, they suffer a substantial loss in performance

when processors must communicate or share data often. Figure 1.3 shows a typical

structure for a distributed-memory multiprocessor. Shared-memory multiprocessors can

handle the sharing of data and communication among processors very efficiently since

the processors can share real memory; however, since the processors normally share a

common bus or interconnection network, only a limited number of processors can be

Figure 1.4 shows a typical structure for a shared-memory multipro-attached and used.

cessor.

/So IS1 ISN

1111
PEo J PE1 ... PEN

Figure 1.2. Multiple Instruction-Multiple Data multiprocessors

4

Interconnection Network

PEo PE1 ... PEN

Figure 1.3. Distributed-memory multiprocessor

Interconnection Network

PEo PE1 PEN

Figure 1.4. Shared-memory multiprocessor

SIMD (Single Instruction-Multiple Data stream) architectures operate on the prem-

ise that the same instructions can be executed by all of the processors on different data;

however, not all applications can be partitioned this way. The SIMD architecture is

shown in Figure 1.5. High-performance vector processors are best suited for the small

subset of design automation problems that can be modeled as vector-matrix operations.

PEo

Figure 1.5.

Instruction Stream (IS)

I
l ,l

PE1 I1" . • •

[
PEN

Single Instruction-Multiple Data multiprocessors

Special purpose hardware accelerators have been developed as well [9]; however,

these can be very expensive and if designed for a particular algorithm, can be rendered

obsolete when better algorithms are developed. Thus, the methods for partitioning the

tasks and the data of the application are dependent not only on the problem, but also on

the type of parallel architecture intended and available for use.

Throughout the next few chapters, we will attempt to describe our approach to solv-

ing two VLSI CAD problems on a shared-memory multiprocessor. The first problem is

global routing, and the second problem is simultaneous placement and routing.

Throughout the rest of the thesis, our solutions to these problems will be discussed.

1.3. Thesis Outline

Chapter 2 of the thesis discusses the problems of the placement of cells and the

global routing of nets in a row-based design methodology. The problem definitions and

the models upon which cell placement and global routing are based are presented.

Next, a brief review of some of the previous work in the areas of both uniprocessor algo-

rithms and parallel algorithms is discussed.

Chapter 3 is devoted to a thorough discussion of our new parallel algorithm for glo-

bal routing. Specific aspects of the global routing model and its relationship to the gen-

eration of the solution are presented. Alternative methods of decomposing the routing

problem are described and evaluated. A description of the parallel decomposition of

each method is provided, along with mathematical models of the parallel algorithm com-

plexity. Finally, empirical results comparing the alternative methods for varying levels of

parallelism are presented.

Chapter 4 contains a detailed discussion of our new parallel algorithm for place-

ment and routing. Many specific methods employed throughout the algorithm for the

achievement of simultaneous placement and routing are described, as are the types of

parallelisms provided in the algorithm. Empirical results are presented in order to con-

trast the various methods, as well as to evaluate the algorithm and its inherent parallel-

ism.

Finally, in Chapter 5 we summarize our contributions and discuss areas of future

research.

CHAPTER 2.

7

CELL PLACEMENT AND GLOBAL ROUTING PROBLEMS

2.1. Introduction

The cell placement problem involves placing a set of cells or gates on a VLSI lay-

out, given a netlist which provides the connectivity between each cell and a library con-

taining layout information for each type of cell. This layout information includes the

width and height of the cell, the location of each pin, the presence of equivalent (inter-

nally connected) pins, and the possible presence of feedthrough paths within the cell.

The primary goal of cell placement is to determine the best location of each cell so as to

minimize the total area of the layout and the length of the nets connecting the cells

together.

The task of global routing is to take a netlist, a list of pin positions, and a description

of the available routing resources and determine the connections and macro paths for

each net. The net list is taken from the circuit/network description and the pin positions;

routing resource information is derived from a placement of the cells in the circuit as

generated by any high-quality placement algorithm.

2.2. Row-Based Layouts

In this thesis, we are primarily focusing our attention on row-based layouts. Some

examples of row-based layouts include gate array, standard cell, and sea-of-gates

8

design styles. Figure 2.1 shows what a typical gate array layout would look like. The

layout is comprised of a two-dimensional array of basic cells, laid out in rows which are

separated by routing areas called channels. The entire configuration is surrounded by a

ring of pads for connections off-chip. Basic cells contain isolated transistors and must

be "programmed" with connections in different layers of metal. By programming and

connecting one or more basic cells together, all of the basic logic gates (e.g. AND, NOR,

NOT) and flip-flops can be created. To reduce the fabrication time and cost per new

design, wafers of gate array chips are fabricated in large amounts until the point of pro-

gramming and connecting the basic cells is reached. This means that the locations of

the basic cells and the height of the channels are fixed. Each new design will then

II IP+slII

ii llllrl

Channel

Regions

Fixed Rows
------- of

Basic Cells

Figure 2.1. Example of a gate array design

9

• require only a few fabrication steps on the prefabricated wafers, and can be completed

in much less time.

Although the fabrication time is much less, there are some drawbacks to gate array

layout. There is an absolute upper bound on the number of basic cells available and

thus the number of possible gates is limited, in addition, the fixed size of the channels

can either restrict the routing of nets or cause much wasted chip area. Often, basic cell

utilization is much less than 100%. For large quantity productions, the standard cell lay-

out may be better.

A typical standard cell layout is shown in Figure 2.2. Since there is no pre-

fabrication of the wafers, standard cell layouts can have rows of variable height, variable

length rows, and cells of variable width, depending on the requirements of the design.

The overall utilization is much higher; however, the fabrication time is much greater than

that of gate array designs. Since the layout area can be better utilized, the benefit of

lower cost per chip for large quantities may offset the disadvantage of extra fabrication

time.

Sea-of-gates designs are very similar to gate arrays. The primary difference is that

there are no predefined areas for routing. Instead, it is assumed that an extra layer of

metal can be used for over-the-cell connections. The number of basic cells is much

higher than that of gate array, but the fabrication is more costly since more metal layers

are necessary and the ;ayout is more difficult.

2.3. Uniprocessor Cell Placement Algorithms

Most cell placement methods can be divided into two classes: constructive and

iterative [10, 11]. Constructive methods determine the next cell's position based on the

10

-----q

I I IP slI I
i ii i I_

I II 1 I I11_/

w

f

I II sll II

Variable

Height

Channels

Variable

Width Cells

------- in

Variable

Length Rows

Figure 2.2. Example of a standard cell design

locations of the cells that have previously been placed. Specific examples of construc-

tive placement methods include (1) cluster growth [12], (2) partitioning of components

[13-16], (3) global placement by quadratic assignment or convex function optimization

[17, 18], and (4) artificial intelligence planning [19]. Iterative methods attempt to alter a

complete placement of the cells to attain any amount of improvement in the placement.

Specific examples of iterative improvement placement include (1) successive overrelax-

ation [20], (2) simulated annealing [21-23], (3) simulated sintering [24], and (4) simulated

evolution [25, 26].

11

Each of the above heuristics depend on the cost function employed to measure the

acceptability of a current placement. Since the twofold goal of cell placement is to

minimize the placement area while insuring the routability of the layout, cost functions

have examined various criteria such as estimated wire length and cell congestion. One

simple method for estimating the wire length is to measure the half-perimeter of a box

which bounds the pins of a given net. Figure 2.3 graphically shows how the bounding

box measure would be calculated. A more computationally intensive measure is to cal-

culate the wire length of the minimal Steiner tree. One way to measure cell congestion

is to calculate the number of nets that connect separate partitions of the set of cells.

The goal is then to minimize the number of nets cut by a line separating the partitions.

Figure 2.4 shows the high- and low-cost configurations for a small example circuit.

2.4. Parallel Cell Placement Algorithms

The majority of the research work on cell placement has been focused on develop-

ing nonparallel algorithms. These algorithms were discussed in the previous section.

t

Pins

Cells

_ounding
OX

Figure 2.3. Wire length estimation by bounding box

12

I

............

Figure 2.4. Cell congestion estimation by net cut count

However, since the placement of standard cells in a large circuit can be very time con-

suming, researchers have been investigating the tradeoffs of various parallel algorithms

for cell placement. This work in parallel cell placement can be classified based on the

architecture of the target machine. Using a message-passing hypercube multiproces-

sor, Banerjee et al. [27, 28] developed a parallel simulated annealing algorithm. In this

algorithm, the layout area is equally divided among the processor nodes, and cells are

displaced or exchanged between pairs of nodes in parallel, subject to the cost function

and the simulated annealing temperature scale. After a sequence of moves, the cell

location changes are broadcast to all processors to maintain current cell positions.

Ravikumar and Sastry [29] reported another hypercube multiprocessor standard cell

placement algorithm applying a divide-and-conquer technique. Following an initial cell

placement, all clusters of cells are placed optimally within each cluster (using enumera-

tion methods) in parallel. The clusters are then modeled as single modules and a paral-

lel iterative improvement algorithm is applied to the clusters. Finally, a sequence of per-

turbations is applied to cell combinations within the clusters and between pairs of clus-

ters in parallel.

13

Shared-memory computers have also been used as target multiprocessor architec-

tures for the cell placement problem.

annealing algorithm fcr macro cell

Casotto et al. [30] proposed a parallel simulated

placement on a shared-memory multiprocessor.

Steps are taken to reduce the amount of error caused by the parallelization of a sequen-

tial algorithm. The shared memory is especially useful to help reduce communication

overhead when updating cell locations after a move. Kravitz and Rutenbar [31]

presented an algorithm for standard cell placement on shared-memory multiprocessors

based on parallel simulated annealing. Two methods for extracting parallelism were

analyzed: parallel move decomposition and the application of serializable subsets of

moves in parallel. A serializable set of moves is any set of sequential moves which if

executed in parallel would produce the same result. Move decomposition provided only

a parallelism of three and speedups around two. Parallel moves were effective at the

low-temperature ranges when the percentage of moves accepted was very small and a

serializable set of moves was easier to attain.

Casotto and Sangiovanni-Vincentelli have proposed a parallel standard cell place-

ment algorithm for the Connection Machine [32]. In their algorithm, sets of processing

elements (PEs) are assigned to each cell and net, and are responsible for any calcula-

tions concerning those circuit elements. Unfortunately, the size of the machine and the

number of PEs required for cells and nets limit the size of the standard cell circuits to

around 8000 cells. Wong and Fiebrich [33] have developed a parallel algorithm for the

Connection Machine using similar data structures [34].

Ueda et al. [35] have proposed a parallel cell placement algorithm for a two-

dimensional processor array. The placement is performed by repeated pairwise

14

exchanges of cells in parallel. The authors claim that the amount of interaction among

the parallel exchanges reduces to almost nothing for large circuits. Finally, Kling and

Banerjee [36] have implemented a simulated evolution-based standard cell placement

algorithm on a network of workstations.

available processors in a cyclic manner.

The rows of cells are distributed among the

The simulated evolution methodology is then

applied to the set of cells in each processor with periodic broadcasts of the current cell

locations.

2.5. Uniprocessor Global Routing Algorithms

Figure 2.5 shows a simple global routing problem for a chip with pads(P) and stan-

dard cells(C) in rows connected by nets(N). A global router must make choices among

alternative paths for each net. In Figure 2.5, one such choice is between routing the net

using the segment N and routing using the segment N'. Furthermore, global routers

 clcjcf<
,. [. -I I'_1

C C C (ml ,I,II
L_

1½
• ! I N

 l!i 'oIolo I
_--__.-._..._..._-.'...:

Figure 2.5. The global routing model

15

must determine how to connect wires from one row to another. These connections can

be made by routing around the end of the row, utilizing terminals of a net on the top and

bottom sides of a cell (equivalent pins), or making use of special feedthrough paths

within or inserted between cells in the row.

Some criteria used to evaluate the quality of the routing include: total net length,

total chip area, the number of tracks required to route the nets between the rows of cells

(row-based routing), and the number of feedthroughs that had to be inserted between

cells. For row-based layouts, i.e., standard cell or gate array, the output of the global

router is typically used to set up the channels to be routed by a channel router.

Previous research in uniprocessor global routing can be divided basically into these

categories: minimum spanning tree and other graph theory-based solutions [37-39],

maze routing [40], physical analogies [41-43], and hierarchical routing [44-46]. Minimum

spanning tree solutions model net connections as a spanning graph. The nodes of the

graph represent the cells which the net connects and the goal is to try to reduce the

graph to a tree while minimizing a cost function. In order to be effective, however, this

method must handle the net ordering problem which occurs when nets are routed indivi-

dually. Usually, the first nets selected for routing are given the best paths available.

However, as more nets are routed, the constraints on unrouted nets build up so that the

last nets routed have little chance of being routed well. A common method for dealing

with the net ordering problem is to remove and then reroute sets of nets until no further

improvements can be made.

Maze routing methods typically apply a line/wave expansion algorithm from a

source pin to a destination pin. Since nets are usually expanded one at a time, the net

16

ordering problem affects the quality of the results and must be addressed. Furthermore,

nets must often be split into 2 pin subnets, providing a source and destination for the

search algorithm, before routing can begin. This a priori splitting of nets can add

unnecessary constraints to the problem and reduce the quality of the routing solution.

Physical analogy approaches have modeled the routing problem to fit into the

framework of concepts such as simulated annealing, attractive and repulsive forces, and

electromagnetic forces; however, the solutions generated must usually be transformed

from the continuous domain to the discrete domain. Top-down and bottom-up hierarchi-

cal approaches have also been studied, usually in conjunction with one of the above

approaches, to handle this complex problem.

2.6. Parallel Global Routing Algorithms

As with cell placement, the majority of the research work on global routing has been

focused on the development of nonparallel algorithms; however, there have been a few

projects which have utilized parallel approaches to the problem. One approach was to

develop a maze routing algorithm suitable for a special purpose hardware routing

machine, made up of a 2-D array of microprocessors [47]. Similarly, a maze router was

implemented on the AAP-1 2-D array processor [48]. Two other algorithms for maze

routing have been developed, specifically for the hypercube multiprocessor [49, 50]. A

different approach, developed by Rose for shared-memory multiprocessors [51], deter-

mines the best of all possible two-bend routes for each two-pin subnet of each net.

Along with the problem of net order dependence, some of these parallel routing

approaches suffer from routing quality degradation. As the number of processes used

to solve the problem is altered, the quality of the final result can change dramatically.

17

This is because processes must assume that the current state information contained

within themselves is accurate. However, some processes may be changing important

state information that may not be immediately reflected in other processes. As the

number of processes increases, the state information may become less accurate.

It is very important, then, to partition the tasks to be solved in parallel in such a way

as to minimize the interaction among the tasks being solved simultaneously. Hierarchi-

cal methods can be used very effectively to partition a problem into independent sub-

tasks, provided the partitioning is done carefully. Since hierarchical routing methods not

only route all nets simultaneously without occurrence of routing degradation with paral-

lelism, but also handle large and complex routing problems, we have chosen to develop

a parallel top-down hierarchical router [52]. Our parallel, hierarchical routing algorithm

will be discussed in the following chapter.

2.7. Combined Placement and Routing Algorithms

We have been discussing placement algorithms that use an approximation of net

routings during evaluation stages. Since global routing and cell placement are both

NP-hard problems, most design methodologies have separated the two problems to

reduce the solution complexity. Often, lower quality placements and routings result from

the separation of the two problems. A placement algorithm that takes into account the

information from a global routing of the nets throughout the algorithm can better antici-

pate routing congestion and adjust the placement immediately. A routing algorithm can

perform far better if it guides the placement of cells as they are being placed to reduce

routing demands in particular regions. Most placement programs measure the quality of

a cell's location by finding an approximation of the net lengths, usually the half-perimeter

18

of a box bounding all pins of the net; however, with simultaneous placement and rout-

ing, the goodness measure of a cell can be evaluated more accurately.

Noting the benefits of combining placement and routing, other researchers have

begun to develop techniques which combine algorithms for the two problems to improve

the final placement. Szepieniec [53] proposed a novel hierarchy-based integrated

placement and routing algorithm. The algorithm depends on having the underlying lay-

out arranged as a slicing layout. A slicing layout is obtained by repeatedly splitting a

layout with alternating horizontal and vertical parallel lines. Shragowitz et al. [54]

presented a placement and routing algorithm for use in the layout of sea-of-gates style

chips. The layout is dynamically divided into slices as the solution proceeds from the

left side to the right side of the layout. Dai and Kuh [55] proposed an algorithm for

integrated floorplanning and global routing. This algorithm is especially designed for

Building Block Layouts. Igusa et al. [56] developed another sea-of-gates based

floorplanning/placement/routing system. In a hierarchical fashion, floorplanning is per-

formed on the set of cells, followed by specific placement of the cells. Next, a sequence

of global routing and placement adjustment steps are repeated until convergence is

achieved.

Finally, Suaris and Kedem [57] proposed an algorithm for combined placement and

routing of standard cells based on quadrisection (an extension of bisection). Again in a

hierarchical fashion, the cells are placed, based on the terminal propagation of each net,

followed by global routing to generate a spanning tree for the nets. The spanning tree

information is then used to assist the terminal propagation. This sequence is repeated

in a sequential manner.

19

2.8. Parallel Combined Placement and Routing Algorithm

Unfortunately there has been little, if any, published work in the area of parallel

algorithms for simultaneous placement and routing. As we have seen, parallel process-

ing can be used effectively in placement algorithms to reduce the overall runtimes. We

have seen that there are many benefits to combining the tasks of cell placement and

global routing while taking advantage of the interaction between the two. In Chapter 4,

we will present a new parallel algorithm for combined placement and routing which

addresses these problems.

20

CHAPTER 3.

PARALLEL GLOBAL ROUTING

3.1. Global Routing Model

The global muting model we are using is similar to that of Burstein and Pelavin [44].

The entire layout area (including pads) is divided into a two-dimensional array of muting

b/ocks. Each routing block is assigned routing capacity information for each of its four

boundaries based on the physical dimensions of the routing block and the underlying

layout. Figure 3.1 demonstrates how the routing block array and the routing capacity of

I"---'1- "1'
r -t I I

i I
t_ j

L__J-I

I- -I I I I I
i i i i

L J L/_J._L. -

I- -I I | m I

L, / I I | I
I_ J-_, .1_ .I.

r---'l---- "1- "t"
r -I , ! ! ,.

' I'' L__.L__ -±

4 4 4 4 4

i r" '-i 1 2 1 1 2 1

--- ,2] ,2 32 32 ,2i4
---1 2! i

'' Lr nJ 1 I 221 12= 1 2 2 2 1

--J 4 4 3 2, 3 2 4 2' 4

-r _ 1 1 2 1i , r"-I 1 2 2! 2 2 2
I

I I I,. J !
"J- J 4 2 4 2 3 2 3 2 4 2 4

"-_ r_ 1 2 2 2 1 2 1 2 2 2 1

I L J
-J

4 4 4 4 4

(a) Layout block setup (b) Capacity determination

Figure 3.1. Routing block model

21

each block (Figure 3.1(b)) are derived from a given layout (Figure 3.1 (a)). The dashed

boxes represent the cells in rows and the pads along the edges of the layout. The

dimensions of the routing block array are determined by the number of cell rows in the

layout. The numbers along the grid lines in Figure 3.1(b) represent the wiring capacity

along the vertical and horizontal edges of the routing block. The values given are based

on the channel width, the number of built-in feedthroughs, and the actual size of the

routing block.

In the routing capacity model, it is sufficient for each routing block to maintain capa-

city information for only two of its four shared edges (for example, the top and right

edges). Let us denote the vertical capacity for a routing block in row r and column c as

Vr,c-(across the top edge), and the horizontal capacity as hr,c (across the right edge).

Let L, R, T, and B be the locations of the left, right, top, and bottom edges (rows and

columns) of the region to be solved. Let Xand Ybe the locations of the vertical (y) and

horizontal (x) axes, respectively, of the two-by-two bin array. Let CAPi, i _ A,B,C,D

represent the capacities of the four axis segments in clockwise order around the two-

by-two bin array, as shown in Figure 3.2(a). Then,

____min (hi,x-l ,hi,x , hi,x+1)CAPA

= min (Vy-l,i , Vy,i, vy+ l,i)CAPB

CAPc = ,=_ min (hi,x-1 ,hi,x ,hi,x+l)

CAPo = ,=_mm(vr_l,t, Vy,i, Vr+l,t).

This scheme quickly estimates the capacity of the axes, with little chance of overes-

timating by concentrating on the regions closest to the axis. Cases in which the routing

22

.-_m

y_

CA

f"A D_

vw ,i U

CA

PA

[?.4P_
.... t.#

Pc

r

CAPc

=10

CAP_ = 4

=10

L X R L X R

(a) (b)

Figure 3.2. (a) Axes capacities of 2x2 bin array (b) Example

block capacities are nonuniform near an axis are handled as well. Figure 3.2(b) illus-

trates the capacity estimation for the example in Figure 3.1.

At the start of each level of the hierarchical decomposition, the current set of rout-

ing blocks is divided into four regions or bins, forming a two-by-two bin array. During

each stage of the decomposition, these bins are further divided into smaller regions until

one of the dimensions of the bin is equivalent to the size of a routing block.

Next, each net in the given problem is classified as one of 15 net types, based on

the presence of pins in each of the four bins. Figure 3.3 shows the 11 net types consist-

ing of two or more occupied bins, along with the set of all possible routings associated

with each net type. The remaining four net types not shown in Figure 3.3 represent nets

which have all pins in the same quadrant, and are unnecessary to include in the routing

evaluation.

Each possible routing of the net types has been assigned a unique variable number

to be used in solving a linear program (see Figure 3.3). Such a formulation was

23

Configuration

Type Variable

0,,oE3 ,,E3,,_

Figure 3.3. Net types and possible routings

proposed by Burstein and Pelavin [44]. We define a linear (integer) programming (LP)

formulation of the problem to be

For all x, MAX (px)
subject to Ax <_a and Bx = b,

such that x represents the variable space, p represents the objective function, A and a

24

represent the inequality constraints, and B and b represent any equality constraints. In

our problem, the variables, xi, 0<i<27, represent each of the 28 possible net routings

from Figure 3.3, and the set of 15 constraints is based on the available routing capaci-

ties and the types of nets being routed. Four of the constraints which limit the number

of nets crossing between adjacent bins are as follows:

CAPA > Xo+X3+Xs+Xs+Xe+X 1o+Xl 2+x 13+xl s+X 17+xl 9+X2o+X22+x23+x25+x26+x27

CA PB >- x 1+x2+xs"l'X7 -I'X 8+x 9+x 12+x13 +x 14+x 17-I-x 18+x20+x22+x23 +x 24+x26+x27

CA Pc > x I .'FX2+X 5"FX7 -t'X 8+x 10"i'X 1l+X 14+x 15+x 16+x 18+x 19+X21+X23+X24+X 25+x 27

CAR D >_x 1+x3+x4+x6+x7 "l'x 10+x 1l+X 14+x 15+x 17-t-x 19+x20"l'X 21+x22+x24+x25+x 26

The remaining 1 1 constraints limit the variable values for each of the 11 net types and

are as follows:

N0011 -- Xo + Xl

N0101 = x2 + x3

N0110 = x4 + x5

No111 - x6 + x7 + x8

N1001 -- x9 + xlo

N1010- Xll + x12

N1011 - x13 + x14 + x15

Nl100 = x16 + x17

Nl101 =x18+x19+x20

Nl110 = x21 + x22+ x23

N1111 -- x24 + x25 + x26 + x27

where Nt is the total number of nets in each configuration t.

25

The objective function is designed to minimize the interconnection lengths of the

nets by prioritizing the variables representing the shorter length connections more than

those representing the longer ones. For example, in Figure 3.3, Xo would have a higher

weight than xl, and x4 would have a higher weight than xs. The four variables

representing the routing configurations of net type 15 are biased in the objective function

toward the selection of the shortest length net. For instance, if the area represented by

the four bins is wider than it is high, it is desirable to minimize the number of horizontal

connections. Therefore, we would favor variables x24 and x26 over variables x25 and

x27 by assigning them a higher weight.

The values of the variables xi resulting from the solution of the linear program

represent the number of nets routed in the particular pattern which the variable

represents. After a solution to the LP is found, the nets must then be assigned to the

appropriate configuration. The current implementation performs a greedy assignment of

the nets.

3.1.1. Feedthrough insertion and channel width expansion

In row-based layout, feedthroughs must be inserted into the rows to make connec-

tions if no built-in feedthroughs or equivalent pins are available when connections must

be made from rowi to rowi+2 past rowi+l. The routing algorithm handles the problem

through the simplex computations. After the problem has been set up, as long as

sufficient routing facilities are available, a solution will be found, or else the simplex algo-

rithm will terminate as having an infeasible initial problem. By analyzing the simplex

state and the given routing problem, adjustments to certain capacities will provide a

feasible initial problem for the simplex algorithm. Under certain simplex state conditions,

26

these adjustments immediately generate a feasible initial problem.

capacities are increased until a feasible problem is produced.

and CAPc are equivalent to an increase in the channel width.

and CAPo are equivalent to the insertion of feedthroughs in the row along the X-axis.

Otherwise, selected

Adjustments to CAPA

Adjustments to CAPB

3.1.2. Hierarchical decomposition

As mentioned earlier, we are applying two-dimensional hierarchical decomposition

methods to the global routing problem. At each stage of the hierarchy, we divide a

larger problem into four smaller subproblems (divide and conquer). Deciding how to

partition the subproblems so that they are independent of each other is very important.

One critical decision involves the determination of net-crossing locations along the boun-

daries between the subproblems,, and the determination of methods for locking these

locations in place. We have investigated two approaches, which are discussed in the

following sections.

3.1.2.1. Maximal boundary determination

The first strategy completely determines the net-crossing locations by recursively

decomposing along the axes of interest down to the routing block level. This strategy is

computationally more costly than the one to be discussed in the next section, but the

advantage is that the complete boundary interface is determined hierarchically. Figure

3.4 shows the first steps in the decomposition for this strategy. The nodes of the graph

represent a complete solution of a two-by-two routing problem, consisting of net

analysis, linear program setup, linear program solution, and the assignment of nets to

particular route types. The arcs of the graph represent dependencies from child nodes

27

1

2

I

3

I

4

5

Y Route

6

! i

X Route

Figure 3.4. Maximal boundary determination

(below) as their parent node (above). The steps 0,4,7 represent single two-by-two bin

routings. The steps 2,3,5,6 represent two-by-N routings of each axis from the previ-

ous step. In Step 1 and Step 2, the topmost two-by-two solution is followed first by the

28

recursive two-by-N subdivision and solution of the X-axis down to the level of individual

routing blocks, and second by the recursive two-by-N subdivision and solution of the Y-

axis. After the completion of these steps, the net crossings have been completely deter-

mined and locked into place along both axes of the two-by-two bin problem, and the four

subproblems for Step 3 are completely independent of each other. This sequence of

steps is then recursively repeated until the size of the bin is equal to the size of the rout-

ing block, and the net crossings through all routing block edges have been determined.

This strategy utilizes the maximum number of two-by-two routing solutions.

Figure 3.5 shows by example the first four decomposition steps of Figure 3.4. In

this figure, the area of interest is highlighted by a box. The ellipses in the figure

represent axis segments over which the routing has determined the set of crossing nets.

Step 1 has decomposed the Y-axis into 2 parts, specifying the sets of nets crossing

each half. Step 2 begins by decomposing the Y-axis, first into 4 parts, then into 8, and

so on. Step 3 decomposes the X-axis in the same manner as Step 2. Step 4 begins

with four independent routing problems since the net crossings over each border have

been completely determined.

3.1.2.2. Minimal boundary determination

Figure 3.6(a) shows the first steps in the hierarchical decomposition for this second

strategy. The topmost two-by-two problem is solved (Step 1), followed by quick heuris-

tic approximations of the crossings of nets instead of the application of a two-by-N rout-

ing of each axis. The four subproblems are then completely independent in Step 2.

These steps are repeated recursively until the routing block level (bin = routing block)

is reached. This strategy utilizes the fewest possible two-by-two routing solutions for a

29

2

I-

I-

3

4

IHI
i

HI
½

Figure 3.5. Example of maximal boundary determination

3O

2

3

i

i"

i

(a) Task graph

st_

2

3

i
|

(b) Example

Figure 3.6. Minimal boundary determination

31

hierarchical routing. In Figure 3.6(b) we find an example of the decomposition steps in

(a).

Even though the execution time for a single node of this strategy is greater than

that of the previous strategy, the minimal determination of the boundary lines is faster

than the previous method since the number of nodes in the graph (or solutions of two-

by-two routing instances) is far less than that for the Maximal Boundary Determination

strategy. However, the quality of the solution is often sacrificed for the sake of computa-

tional speed. The routing difficulty exists because without a costly complete analysis, it

is extremely difficult to determine accurately the points along the boundaries at which

each net should cross. Some approximations based on the pin locations of each net are

used to estimate the crossing; however, if the boundaries are not well-predicted, the

quality of the routing will be severely degraded, starting from the topmost two-by-two

solution (Step 1). The Maximal strategy takes the extra effort to completely analyze the

routing constraints along the subproblem boundaries in a hierarchical fashion.

3.2. Parallel Algorithm Overview

The term granularity has become accepted as a measure of the amount of work

completed by a process before communicating with other processes in a parallel pro-

cessing environment. Large-granularity applications would be characterized by long

processing sequences interrupted by short, infrequent communication sequences.

Fine-granularity applications would be characterized by very short processing

sequences with a large amount of communication among processes. As will be shown,

the tasks of our global routing algorithm can be considered coarse-grained, since the

ratio of execution time to synchronization/communication time is very large.

32

3.2.1. Exploitation of coarse-grained parallelism

The parallel execution of a binary tree is a well-known paradigm. The hierarchical

routing execution in our algorithm takes the form of a binary tree in which the nodes of

the tree represent the LP setup, the LP solution, and the net assignments for a single

two-by-two routing problem. Furthermore, each node of the tree that is currently being

evaluated is completely independent of all other nodes on the same level. The local

information for the current subproblem is derived from its parent node's data structures

and global pin location information, which is strictly read-only. The solution of the rout-

ing subproblem causes the executing process to write the results to a global (shared)

output data structure. However, since the tasks are spatially independent, there is no

need for critical sections of code to lock out other processes as a process writes out its

results.

After writing the results, the process creates two child routing subproblems. One

child subproblem is assigned to the first idle and waiting process. The second child sub-

problem is then executed by the parent itself. If no processes are waiting, the parent will

proceed to execute the first subproblem, followed by the second. The number of

processes created and initially available for task solution is set equal to the number of

processors available to the user.

The routing solution complexity and speedup under parallel execution for both

decomposition strategies are estimated in the following sections.

3.2.1.1. Maximal boundary determination

Given R rows and C columns of routing blocks, the required number of evaluations

to solve the vertical segments of all routing blocks in the maximal decomposition

33

strategy is (R - 1) x (C - 1). Similarly, the required number of evaluations to solve the

horizontal segments is (C- 1)x (R- 1). However, one vertical and one horizontal

component is solved at each iteration, therefore, the total number of evaluations, N2x2,

is

N2x2= (R- 1)(C- 1).

This expression has been verified through actual runs of the algorithm.

execution time for one process is then

The estimated

T1 = T2x2(R- 1)(C- 1),

where T2x2 is the average time to solve a single two-by-two routing problem as a linear

function of the number of nets n. Since the estimated execution time Tp for P

processes is equal to the time spent executing until all P processes are activated plus

the time spent in full parallel execution, we have

I (R- 1)(C- 1)- 7P- 13
3

Tp = (T2x2 + Tsync) 210g2P + Iog4P - 2 + p ,
o

where Tsync is an estimation of the time spent in synchronization. After simplifying the

expression, we arrive at

Tp._(T2x2+ Tsync)((R-1_C- 1) _ 13P-13 +{Iog2P).3P

The expected speedup is then

T1 T2x2 6P(R - 1)(C
SP="I_-P= (T2x2 + Tsync)6(R-1)(C- 1)-26P +2;)+ 15PIog2P"

3.2.1.2. Minimal boundary determination

Again, given R rows and C columns of routing blocks, Z = min(R,C), the required

number of node tasks to solve is

34

tog__.,.-1 Z 2N2x2 <_ 4 i _ - 1
I=U _ _'r_r-'_,

in which equality holds for cases in which Iog2Z is an integer. The estimated time for

completion for one process is N22 ×T22. Again, since the estimated execution time for

P processes is equal to the time spent executing until all P processes are activated plus

the time spent in full parallel execution, we have

_72-1 P-1Tp -- (T2x 2 + Tsync) Iog4P -t '3 3"_P

After simplifying the expression, we arrive at

Tp=(T2x2+ +½1og2P)
The expected speedup is then

T1 _ T2x2 2P(Z 2- 1)
Sp = _ - (T2x 2 + Tsync) 2Z 2 _ 2P + 3PIog2P"

Figure 3.7 provides a graphical look at the two equations for Sp assuming

Ts ,,nc
= 0.1. Included in the plot is an estimate of process efficiency (useful time/total

time) ranging from 0.95 for P = 2 to 0.6 for P = 16, based on measurement extrapola-

tion, to model the effect of the task scheduling mechanism on the speedup. The current

implementation provides dynamic task scheduling based on process availability. An idle

process can acquire a task only immediately after another process generates it. To

eliminate the need for barrier synchronization of the processes, a task queue is replaced

by a process idle scoreboard. Thus, due to task granularity, there will be times when a

process waits idle for a new task to be generated. As the number of processes

increases, the process efficiency is expected to decrease.

35

Projected
Speedup

15-

10-

Maximum Decomp.

............. Minimum Decomp.

-0
I I I

-0 5 10 15

Number of Processors

Figure 3.7. Plot of projected speedup vs. number of processes

3.2.2. Exploitation of fine-grained parallelism

There are three specific subtasks which can be executed in parallel at a fine-

grained level. First, during the LP setup, the type for each net of the current two-by-two

problem is determined. Since each net is independent, the nets may be divided among

available processes and evaluated in parallel. Second, the exchange operations

required to solve the linear/integer program may also be divided among available

processes for parallel execution. Finally, the assignment of nets could be done in paral-

lel, based on specific net types. Each of these areas of parallelism is orthogonal to each

other.

However, since the amount of parallelism available at the task level (coarse-

grained) is so great, the exploitation of parallelism at the fine-grained level would not

provide significant improvement. Only during the startup phase of the execution tree will

36

specific processes be idle. Figure 3.8 shows the percentage of the number of two-by-

two solutions in the startup phase in relation to the total number of two-by-two solutions

for routing problems with R = C = Z and P = 16. As is clear from the figure, the part of

the execution in large problems for which fine-grained parallelism can be useful is

extremely small. Furthermore, parallelism of the simplex solution would not be effective

since the average number of pivoting operations for solution has been measured to be

less than 6. Therefore, we determined that is was unnecessary to evaluate these tasks

in parallel at such a fine-grained level.

Percentage

100

80-

60-

40-

20-

Maximum Decomp.

...... Minimum Decomp.

-0 _
1 I I

-0 50 100 150

Problem Size (2)

20O

Figure 3.8. Percentage of tasks in startup phase

37

3.2.3. Task complexity

In the previous sections, we have discussed some of the basic elements of the

two-by-two routing task. These are summarized as follows:

1. Evaluation of net types.
2. Setup of linear programming formulation.
3. Solution of linear/integer program.
4. Assignment of routing pattern to each net.
5. Subdivision of area for next level of hierarchy.
6. Repetition with child nodes.

LEMMA 1:

The complexity of a single solution of a two-by-two routing task is O(n), where n is

the number of nets.

Proof:

We will show that each subtask solution is O(n) in the worst case. A circuit is

assumed to have p < kn, where p is the number of pins or net terminals, k is a

constant equal to the maximum number of pins per net, and n is the number of

nets in the circuit. Thus p is O(n).

1. To evaluate each net type requires a search for pins in the current region. This

operation is O(p)<_O(n).

2. Each net is assigned to a specific linear program variable based on the characteris-

tics of the net's pins. This subtask is O(n).

3. The simplex solution of a linear program (with 28 variables, a fixed number

independent of the problem size) can be shown to terminate in a finite number of

pivots (steps) provided proper pivoting techniques are used. We are also applying

cutting plane methods to convert the linear program solution into an integer solution

38

[58]. Measurements taken show the average number of pivots in the simplex solu-

tion to be less than 6.

4. The current implementation utilizes a straightforward assignment algorithm which

runs in O(n).

5. Subdivision of the current two-by-two region and setup for the next level of the

decomposition can be done in constant time.

Thus, the complexity of a single task solution is O(n).

QED

THEOREM 1:

The complexity of the parallel global routing algorithm is O(nM), where M is the

number of routing blocks.

Proof:

The total complexity of each strategy is the product of the task complexity and the

total number of tasks (nodes). From Lemma 1 we know that the single task com-

plexity is O(n). For the worst-case Maximal Decomposition strategy, we deter-

mined in Section 3.2.1 that the number of tasks (N2x2) is slightly less than the total

number of routing blocks (M = RC). Thus, the complexity of the algorithm is

O(nM).

QED

39

3.2.4. Experimental results on 2X2 routing task complexity

For the following figures, the measurements were taken on the Encore Multimax,

executing the Maximal Strategy on the Primary 1 benchmark. The iteration number

refers to the task solution number in a depth-first trace of the execution graph. Figure

3.9 shows the time taken to set up the LP problem for each of the task solutions. The

average time is 12.9 ms; the standard deviation is 1.2 ms. Figure 3.10 shows the time

taken to solve the given LP problem for each task solution. The average time is 5.7 ms;

the standard deviation is 5.3 ms. Figure 3.11 shows the execution time to assign the

net types to a specific configuration for each task solution. The average time is 1.0 ms;

the standard deviation is 0.6 ms. Figure 3.12 shows the total execution time (T2x2) for

each task solution. The average time is 19.6 ms; the standard deviation is 5.6 ms.

40

Elapsed
Time

(ms)

30-

20--

10-

-0

'..,. .. o . ._ .'; ;.:. ..:. :.. ._: "

, .. ,_..... ..'....:•.,:.....,•..•',..•••-..;'....•.'•......• .',.......:......"................................,......

-0

I I I
5OO 1000 15OO

Iteration Number

2OOO

Figure 3.9. Net setup time vs. iteration number

4O

40

Elapsed
Time
(ms)

30-

20-

10-

-0

,;." "

.......... :.,'.;..... :....."_.',..... ,..... ..'.;..;.:.._,..:.:.... -..::..........:
• .\.'...-..... ".....:...., .-,.....'-..-...,-.....\...... •--.:.._ ...".. ;...." ,.....-..........:'......

I I I

-0 500 1000 1500

Iteration Number

20OO

Figure 3.10. LP solution time vs. iteration number

41

40

Elapsed
Time
(ms)

30-

20-

10-

-0

,"o °
,, .-.,°....... _..... ,......,_.',...... .,.'.....:.." ". -

• .\ .'...-......."......:...., .',.......-............._:......•-......,..'......... ,.....;..-.......'......

I I I
-0 500 1000 1500

Iteration Number

2OO0

Figure 3.11. Net assignment time vs. iteration number

42

3.3. Implementation

The algorithm was implemented as PHIGURE (Parallel Hierarchical Globat RoutEr)

using approximately 5000 lines of C code on an eight-processor Encore Multimax 510

(shared-memory multiprocessor). Experiments were performed on a few of the place-

ment and routing benchmarks from the MCNC Workshop on Placement and Routing,

along with a number of other circuits. Testing was done for a single process, two

processes, four processes, and eight processes.

A flow chart for the master (MP) and slave processes (SP) is shown in Figure 3.13.

The master process begins by initializing shared and local data elements, including the

idle processor scoreboard. The scoreboard is used to indicate the busy/idle state of

each process and to pass pointers to new tasks for evaluation. Next, the master

40

1
30 ---I

Elapsed
Time

(ms)

20-

10-

-0

...... , -.,......'.-....'.L-..,:-.,..:..-.... .-'.'-.........:,.,
•_ o. • .

•"-.." .'k..'. " _ '"" "'" ": ;" "" """.: ".....:......"_...,,. •..'..:...... • "."..;"..,.."..., '.',.....-.,:'.-...."..,..

-0
I I I

50O 1000 15O0

Iteration Number

2OOO

Figure 3.12. Total time vs. iteration number

43

MASTER

Initialize

Fork (P-l) Slaves

Set Top-Level

Evaluate Route

Setup Subtasks

es

Yes T

Assign Task.

Initialize

Wait for Task

Evaluate Route

Setup Subtasl_s

I Assign Task

_ Exit

Figure 3.13. Parallel global routing flowchart

44

process forks off NumProcesses-1 processes. These processes receive copies of any

fixed data (not to be changed) and share memory space for the data to be used by all

processes. Following the solution of any routing tasks, new tasks are created (children

of the node in the execution graph). The scoreboard is checked for idle processors. If

there is an idle process, one of the new tasks is passed to it by way of the shared task

pool; otherwise, the current process continues with the evaluation. The shared task

pool is an array of pointers in shared-memory space. Processors enter a critical code

section to place a task pointer in the pool or to remove a task from the pool.

While the SPs wait, the MP creates and solves the first routing task. After comple-

tion, idle SPs can begin to execute tasks in parallel. Processes which reach the bottom

level of the hierarchical decomposition and are unable to create new subtasks set a flag

on the idle processor scoreboard indicating their idle state and wait until a new task is

provided. Finally, when the hierarchical routing is completed, the MP eliminates the SPs

and writes the output to files.

3.4. Results

Table 3.1 compares the routing results of the algorithm to actual runs of the Tim-

berWolf 5.4 global router (TW) [37] using the same placement and some of the recently

Table 3.1. Routing quality comparison

Circuit

Primary1

Primary2

PHIGURE

210

488

Number of Trks

TW5.4(Mea.)
163

432

TW5.4(Pub.)
166

401

UTMC

177
447

CP

190
449

LR

262
563

45

published results for the UTMC router (UT) [37], a router by Cong and Preas (CP) [38],

and Locusroute (LR) [51]. This table shows that the algorithm performs well within the

range of some recently published routers. Table 3.2 compares the uniprocessor run-

times for the TimberWolf 5.4 router with those of the algorithm. These measurements

were also taken on an Encore Multimax.

Table 3.3 shows the results for two of the Placement and Routing Workshop

benchmark circuits and three other standard cell circuits. For each circuit, the table

gives the number of tracks used, as estimated by the maximum channel density across

the routing block edges, and the average execution times in seconds (real time, includ-

ing process creation) for one, two, four, and eight processes using the Minimal and Max-

. imal decomposition strategies. Cell placements for all of the circuits were performed by

TimberWolf 5.4. As is clear from the table, there is no degradation in routing quality

when going from a single process to many processes, and very good speedups were

achieved (>6 for 8 processes). Since the hierarchical decomposition creates a large

number of jobs after the first few steps, our algorithm is scalable for a large number of

processes.

Table 3.2. Uniprocessor runtime comparison

Runtime (s)

Circuit TimberWolf5.4 PHIGURE
P1 221 153
P2 1326 565

46

Table 3.3, Parallel algorithm results

Circuit

(Nets)

Primary1
(1185)

Primary2
(3710)

Circuit Xl

(1979)

Circuit X2

(3013)

Circuit X3

(3258)

P

1

2

4
8

1

2
4
8

1 641
2 641
4 641

8 641

1 709
2 7O9

4 709
8 709

1 742
2 742
4 742

8 742

Trks

348
348

348
348

817

817
817
817

Min Decomp Max Decomp

Time(s)

33
17

9
6

187

97
52

30

189
92
47

29

254
139
74

44

192
97

52
30

SpdUp

1.0
1.9

3.7
5.5

1.0

1.9
3.6
6.2

1.0
2.0
4.0

6.5

1.0
1.8
3.4

5.7

1.0
1.9

3.7
6.4

Trks

210

210

210
210

488

488
488
488

532

532
532

532

596
596
596

596

515
515
515

515

Time(s)
154

81

52
35

565
287

163
93

351

174
91

55

389
193
103

64

645
325
183

97

SpdUp
1.0

1.9

3.0
4.4

1.0
1.9

3.5
6.1

1.0

2.0
3.8

6.4

1.0
2.0

3.8

6.1

1.0

2.0
3.5

6.6

3.5. Conclusions

In this chapter we have presented a new algorithm for parallel global routing. This

algorithm applies hierarchical routing and decomposition techniques to create indepen-

dent subproblems which can be evaluated in parallel. Even though parallelization of the

original hierarchical algorithm might appear straightforward, we have demonstrated that

one needs to decompose the problems in the parallel processing environment in such a

way as to create less interaction among processes and therefore avoid contention. We

have illustrated this through two approaches -- maximal and minimal decomposition.

Results were presented which compare these two strategies for decomposing the

47

routing problem and show that high-quality routings are attainable for one strategy.

Most importantly, the routing quality is not degraded by decomposing in parallel.

The primary goal of this project was to be a stepping-stone for the work to be

presented in the following chapter. There are numerous issues that could still be

addressed; however, since the scope of this project was limited, we decided to proceed

on with new work.

CHAPTER 4.

48

PARALLEL PLACEMENT AND ROUTING

4.1. Overview

In this chapter, we will discuss a parallel algorithm for placement and routing. The

specifics of the algorithm presented refer to standard cell layouts, but, with slight altera-

tions they can be applied also to other row-based layouts. Figure 4.1 shows the main

steps of the algorithm. Each of these steps will be presented, followed by discussions of

the complexity of the algorithm, the expected speedups, and the experiments to meas-

ure the effectiveness of the algorithm and the quality of the results.

Our goals in developing our placement and routing algorithm were to produce

high-quality layouts, be able to interface the routing of the nets to the placement of the

cells, limit the complexity of the algorithm, especially when considering large problem

sizes, and be able to decompose the problem into a large number of independent tasks

that can be executed in parallel. After considering the algorithms currently employed for

placement and for routing, we proceeded to develop a combined placement and routing

algorithm that utilizes two-dimensional hierarchical decomposition methods in both the

placement of the cells and the routing of the nets. This approach especially avoids the

complexity problems of many "flat" placement algorithms and provides many inherent

parallelisms.

49

Figure 4.1.

Floorplanning

Placement and Routing

Detailed Channel Route

Overview of the placement and routing algorithm

4.2. Floorplanning Step

In the first step of the algorithm, floorplanning, the overall layout of the chip is

evaluated. Based upon the total area of the cells that have been read from the input file,

the aspect ratio (the ratio of the width of the chip to the height of the chip) can be user

specified, and the default channel region height, the number of rows to contain the cells

and their lengths are determined. The pads are also arranged around the periphery of

the cell row region.

Next, the entire layout (including the pads) is divided up into a two-dimensional

array of blocks, called /ayout b/ocks. In the cell row region, each layout block

5O

encompasses a portion of a row and the corresponding channel area above the row, as

shown in Figure 4.2. Finally, estimates are made of the routing capacities for the routing

areas of the layout (channels and the area between the pads and rows of cells) and

assigned to the edges of the layout blocks.

4.3. Placement and Routing

The placement and routing step consists of a number of operations which are exe-

cuted in a certain sequence at each level of the hierarchical decomposition. The opera-

tions are (1) the placement of the current set of cells, based on the quadrisection algo-

rithm of Suaris and Kedem [16], (2) the routing of nets for the quadrisection placement,

Pads Vertical Layout Block Cut Lines

"_S_-'T - "L" -IT! T-'l

I

' il I
I I

1---4
I I

F--4
I I

F---I

"-T -1

I I

I I I I I

_ t ' I , Horizontal Layout
I I Block Cut Lines

--_, T-r-r-,--,-_ I----I
/ • / • / • / I I

q P -' it' ¢ it ¢

F---_
---- 7 ,. If-r--I l "7--'_ I _

" ,r" ." ' " ' " 1----I Reserved Channel
_ ' " " Area

:---
I I

F---I
t t

I---4
I I

1----I
I I

L _ _ .J¢. _

I

!

L._

1- - _ Reserved Row
l I 7 I _ l [I_ I/ I _ m _ I I

" " " " " " _-_P"'="4" Area
/ p h i p I p

I I

T T T T -- _ I l _

I I I I I

I I I I !

,1L J- _.L. -,L. _ J

Figure 4.2. Determination of layout block array

51

similar to the algorithm described in Chapter 3, (3) the restricted global bisection of cells,

and (4) the two-by-N routing of the nets in the bisection. Since we have tightly com-

bined these placement and routing tasks, each operation intimately depends on the

results of the other operations.

4.3.1. QuadrisecUon-based placement

Placement methods that are based on a partitioning strategy usually have a goal to

minimize the number of nets crossing over the partition boundaries. The bisection (or

min-cut) method partitions the layout (i.e., the circuit cells) into two groups, performing

cell swaps between the groups until the number of nets crossing the single boundary is

minimized. Figure 4.3 demonstrates the bisection partitioning algorithm in which the two

groups of cells are connected across the boundary line. Let Oh, h e {0,1} be the set of

Cut

Co

_i---

i......

Line

C1

I

I

i......

Figure 4.3. Min-cut partitioning

52

cells located in half h. Cells are repeatedly swapped between Co and C1 to minimize

the number of nets crossing the cut line while maintaining a balance in the cell area of

both halves.

In the quadrisection method of Suaris and Kedem, the layout is partitioned into four

groups (a two-by-two array of bins) instead of two groups, and cell movements occur

among any of the four groups. An extension of the bisection heuristic for the selection

of the cells is applied, which minimizes the net cuts over all four boundary segments of

the two-by-two bin array through the movement of the selected cells. By approaching

the layout problem in two dimensions instead of one, the authors have demonstrated

results much better than those attained with the use of bisection placement. At each

level of the quadrisection decomposition, a portion of the layout is selected and divided

into four quadrants. Figure 4.4 shows the quadrisection algorithm in which the four

groups of cells have net connections across the four boundaries. At level k in the

decomposition, the entire layout has been divided up into a 2kx2 k array of quadrisection

regions (Figure 4.5). Notice that the cut lines used at level k become the boundary lines

for the various quadrisection regions at level k+l.

In our quadrisection algorithm, we label the four quadrants as 0-3 and the four

quadrant boundary segments as A-D, as shown in Figure 4.4. Let Cq, q e {0,1,2,3} be

the set of cells located in quadrant q. Each net is assigned a residency flag for each

quadrant, specified as 1 if a pin of the net is located in the quadrant and 0 if no pins are

located in the quadrant. If a net connection from the area outside of the layout portion

must enter into one of the quadrants, a pseudo pin is fixed in that quadrant for the net

and is included in the residency vector. These pseudo pins are the result of previous

53

Vertical Partition Line

D

Cl

C2 :|

A
Co

I

I

I

•; C3

Horizontal P.L.

B

Figure 4.4. Quadrisection-based partitioning

54

.... :_--_J._--_

.oo° t

I

I

I

I

I

I

I

I

I

I

.oo.roo

I

I

I

I

I

I

o'..........

"i........

I

: I "

I
: I •

: I

I

I

I

..... • ,i •

I

I

I

I

I

I

o.°J..°. _ °

I

I

I

-y - - - _. -- -- --

I
I

I

I

I

I

I

: I

: I :

I

---H---I----k----
: I :

I

I
......... _ ° oo

: I :

I

: I :
I

_CUt_LiB s_
Level 0 X

Level 1 Level 0

Level 2 Level 1

............... Level 3 Level 2

Figure 4.5. Partition and cut lines for different quadrisection levels

routing evaluations which have determined that certain nets cross

through specific segments of the quadrisection outer boundary.

ated with the boundary segment receives the pse_,do pin.

into the layout portion

The quadrant associ-

According to [16], each net can be associated with a cost which is calculated as a

function of the net's residency vector for this set of quadrants. This cost function, which

is shown in Figure 4.6, assumes that the shortest path is always available for connecting

55

><
!

><
VW hw hw + vw

/ v ,,/\ /\

, ><><),
hw + vw hw + 2vw

Figure 4.6. Simple quadrisection net cost function

the pins in the quadrants. The horizontal (hw) and vertical (vw) weights are used to

account for differences in the costs for routing different directions, and are usually

specified by the user.

We propose a better cost function which determines how each net is routed and

calculates each net's cost based on the routing crossings of the four boundary seg-

ments A-D. Figure 4.7 shows the net cost of various routing alternatives for a few pin

configurations. Similar to the simple cost function, the boundary crossing information for

each net, which is determined after a global routing is performed, can be stored as a

vector of residency flags, 0 if the net does not cross the boundary and 1 if the net does

cross, for each boundary segment A-D. As in the standard cost function, the cost func-

tion can be evaluated in O(1) time.

If a given cell c in quadrant q were to be moved to quadrant r, the nets associated

with c may have to be rerouted to make the connections to the new pin in r.

56

Pin Route

Config. Cost

xX N--

vw vw + 2hw

x x--q ¥
X >I(L--.X

vw + hw vw + hw

x x :>¢.-_ x---_ ¥ ¥
x :k x-_ _J

vw + hw vw + 2hw 2vw + hw

x x :_-_: >f:¥ x-el _-x
x x :k 'k >k-d< x--->k >k---x

2vw + hw 2vw + hw vw + 2hw vw + 2hw

Figure 4.7. Improved quadrisection net cost function

Furthermore, if c were the only connection for a net n in q, the connections to q for n

may be removed also. These changes or reroutings of the nets cause changes in the

calculated cost of the net. In order to account for the change in cost, a system of gain

tables is used which reflects the change (gain) in cost of the nets with respect to move-

ments of cells from one quadrant to another. A separate gain table is used for each of

the twelve combinations of q,r e {0,1,2,3} such that q _=r. Figure 4.8 shows the twelve

combinations of q and r and the associated movement of a cell c from quadrant q to r.

57

(q, r) Movement (q, r) Movement

(0,1) (2,0) _/,

(0,2) y, (2,1)

(0,3) I (2,3)

(1 ,0) (3,0)

(1 ,2) I (3,1) _"e

(1 3) e,,,, ,_, (3,2)

Figure 4.8. Quadrisection gain tables

Each gain table contains a list of the movable cells currently located in quadrant q.

Each cell c has associated with it a cost value, determined by summing up the expected

change in cost for each of the nets connected to c, if c were to be moved to quadrant r.

Since our goal is to minimize the net length and cost, a cell is selected for movement

from the gain table when it has the best or smallest cost gain. To efficiently select the

58

cells to be swapped or moved, we utilize the same data structure (Figure 4.9) as Suaris

and Kedem, which is derived from the data structures of Fiduccia and Mattheyses [59].

In this data structure, sets of cells with the same gain value are placed in doubly-linked

lists called buckets. These buckets are indexed by the gain value, with the smallest

gain value denoted as CurrMinGain. The Cell List Pointer Array provides O(1) access

to any entry in the bucket lists, and the doubly-linked lists provide for O(1) insertion and

deletion of bucket entries. For a more detailed description of how to determine the gain

of each cell in the gain tables, see [16].

Bucket Pointer Array

MAX --_

CurrMinGain

MIN----_ /

Cell

Cell Cell _ Cell _ Cell [--'-_

\
Cell Cell Cell i--_

Cell List Pointer Array

Figure 4.9. Gain table data structure

59

In addition to the determination of the minimum gain cell, another important criterion

in the selection of cells is the determination of whether the movement of the cell would

cause an imbalance in the total area of the cells (CellArea) occupied by each quadrant.

A minimal cut would be achieved if all cells were in one quadrant; however, this is

clearly no closer to the solution. A maximum cell area value (MaxArea) and a minimum

cell area value (MinArea) are determined for each quadrant. If

CellAreaq-size(c)>_MinAreaq and CellArear+size(c)<MaxArear, then c may be

moved from q to r.

We propose that another important enhancement to the Suaris-Kedem Quadri-

section algorithm would be the ability to swap cells. Size restrictions can place a tight

limitation on the set of cells allowed to be moved; often, minimum gain cells fall into this

category. We avoid this common problem by allowing cells of equal size to be

swapped. A secondary restriction on the selection of the second cell for the swapping is

that the cell must be in the quadrant r, have a cost gain of 0, and have no nets in com-

mon with the first cell selected. This is necessary to maintain the proper gain values.

After a cell is moved from one quadrant to another, the cell is locked in place, the

cell's bucket entry is removed, and the current state is stored on a stack. The sequence

of selecting and moving cells is repeated until no cells can be selected for movement or

when a sequence of ks selections of cells with gains > 0 has taken place. The stored

state information is then used to backtrack and undo cell movements which have only

worsened the net states and the partition of the cells into quadrants. The steps of cell

selection followed by backtracking are called a pass and are repeated kpass times, or

until no gains are made on consecutive passes.

6O

4.3.2. Routing of the quadrisection

At the end of the quadrisection operation, the cells of the portion of the layout have

been placed in one of the four quadrants while minimizing the net crossings over the

boundaries between the quadrants. A quadrisection routing operation is then used to

verify and lock in place the routing of the nets across the four boundary segments. A

single iteration of the algorithm presented in Chapter 3 for determining the routing of the

nets in a two-by-two array of routing blocks is used, since each quadrant matches one

block of the two-by-two array. This operation is O(n), where n is the number of nets,

and must be done once for each quadrisection operation completed.

If the route-based cost function is used, it is necessary to know the routing of the

nets in the quadrisection region before quadrisection can take place. The routing must

be based on the current placement of the cells at the beginning of quadrisection. Thus,

one iteration of the two-by-two routing algorithm will be performed before as well as after

the quadrisection when the route-based cost function is used.

To determine the best routing of the nets, an accurate measure of the routing capa-

cities across the four quadrisection boundaries must be made. Since the exact loca-

tions of the cells is not known until the placement algorithm completes, we measure the

routing capacity along the horizontal boundaries as the average number of feedthroughs

available divided by the number of rows over which the cells are to be placed. The sim-

plex computations can then insert feedthrough cells in the rows or increase the ct:annel

height, if needed. As cells are moved, the horizontal capacity measure can vary and

must be recalculated before every routing. The vertical boundary capacities are an

average of the number of tracks available in the channels intersecting the boundary.

61

4.3.3. Initial placement for quadrisection

In the discussion of the quadrisection placement algorithm, we mentioned that the

cells to be placed are initially divided into four groups. In [16] a two-stage min-cut

scheme is used to generate the initial partition, or seed, for the quadrisection. In this

section we propose a new method called Restricted Global Bisection for providing the

initial partition for the quadrisection-based placement.

4.3,3.1. The X-dimension restricted global bisection

The bisection is performed separately in the X-dimension and the Y-dimension.

The X-dimension bisection consists of the set of cells between the coordinates Xlo and

Xhi and the bottom and top borders of the layout. The values for xlo and Xhi are deter-

mined by the quadrisections at the previous level in the hierarchical decomposition. The

vertical lines separating the quadrisection regions and the vertical lines which cut down

the middle of a column of quadrisection regions are used as the domain of the values of

xlo and Xhi, thus giving 2 k separate X-dimension bisection regions, where k is the

current hierarchy level (Figure 4.10). Given xlo and Xhi for a bisection, the set of cells is

then partitioned into two groups, separated by a line (Xmid) halfway between Xlo and Xhi.

The bisection region is further divided up vertically, with the number of partitions

PRTbsect = 2 k. Throughout the bisection algorithm, the cells are restricted to horizontal

movements only. Thus, every cell stays in the same vertical partition (Figure 4.10) and

each cell's y-coordinate remains untouched. At the start of the bisection, the set of cells

in each partition is split in two halves using a clustering partition algorithm. This

becomes the seed for the bisection algorithm.

62

k=2

Xlo Xmi d Xhi
I I

[] l Oi

i 0 i
I

I.......... I.......... I.

I

D
l []

D IO_

D
I

D i 0

......... r r

[] i

0 1 2 3

Bisection boundaries

............... Vertical partition cut lines

o Cells

Figure 4.10. Partitioning for X-dimension restricted global bisection

In the same way as [59], cells are assigned a cost function based on the net con-

nections and are moved or swapped between the bisection halves to reduce the overall

cost. To model the restricted movement of cells in the cost function, we have devised a

cost function based on the number of crossings by a minimal length net over the parti-

tion line (Xrnid). Figure 4.11 shows an example in which moving the highlighted cell to

the other half would decrease the number of crossings over Xmid. It is very important to

63

Before

Net crossings = 2

After

Net crossings = 1

Xlo Xmid Xhi
I

I

I

I

I

I. I. I.

3

I

I

I

I

I

I

"1

I I I I

XIo Xmid Xhi
I

I

I

I

I

I.......... I, I.

3

"1

I"'° I

I

I

I

-I i
I

I

I I

X Net crossing

Bisection boundaries

............... Vertical partition cut lines

o Cells

Figure 4.11. Bisection cost function example

note that the net cost function is based on the locations of the cells from the top to the

bottom of the layout, not only in a small section. By evaluating the full height of the lay-

out, we are able to line up nets which pass vertically over many rows and, thereby,

reduce the demand of nets to occupy track space in the channels between the rows.

64

The cells in the two halves are assigned a cost equal to the sum of the costs of

each net attached to the cell. These costs are assigned in gain tables similar to the

quadrisection algorithm and to [59]. Cells are selected from the two gain tables (cells

move only from one half to the other) so as to minimize the net cost gain. Similar to our

quadrisection algorithm, cells may be selected for swapping if the constraints are met.

4.3.3.2. The Y-dimension restricted global bisection

Alternately, the Y-dimension restricted global bisection algorithm partitions the lay-

out into horizontal strips the width of the layout area. By applying the cost function hor-

izontally, we reduce the demand of the nets for a high number of feedthroughs and

route each net in as few channels as possible. Figure 4.12 shows the configuration for

the Y-dimension bisection operation.

The cell size restrictions on movement are similar to quadrisection, but considera-

tion is given to the area available on each half. In the same manner as quadrisection,

the sequence of cell selections and movements until no more moves are possible is

called a pass and is followed by a backtrack to the last best state. A sequence of

passes is performed until either a limit is reached or until no further gains can be made.

4.3.3.3. Combining X-and Y-dimension bisectioning

Since the X- and Y-bisection algorithms exclusively alter the x- and y-coordinates

of the cells (respectively), they are independent of each other, and the two dimensions

can be evaluated simultaneously. Following both evaluations, the cells have been pre-

placed in one of the quadrants of the quadrisection to be involved in the current level of

the decomposition. Effectively, the bisections perform an initial placement of the cells

65

k=2

3

2

0

-4. ÷

0 13

Yhi

Ymid

Ylo

Bisection boundaries

............... Horizontal partition cut lines

13 Cells

Figure 4.12. Y-dimension restricted global bisection

for the subsequent quadrisection operations, based on the positions of all cells in the

same layout block row and columns. However, since the x- and y-coordinates of each

cell are set independently, the balance of cell areas may not be valid. Therefore, we

move selected cells from the fullest quadrant to the least full one at the beginning of the

quadrisection algorithm.

66

4.3.4. Two-by-N global routing

Following the bisection operation, a two-by-N routing of each bisection region is

performed, again using the algorithm presented in Chapter 3 for determining the cuts

along the x- and y-axes. The goal of the routing is to determine the sets of nets cross-

ing each half of the partition lines running perpendicular to the the bisection line at Xmid

(or Ymid). Figure 4.13 shows the steps in the evaluation of a two-by-N routing, which

takes the form of a binary tree execution. The dashed lines denote the boundaries and

cut line for the bisection placement. The dotted lines denote the axis lines to be deter-

mined. The depth of the tree is equal to the current level number in the decomposition

hierarchy.

Although the bisection routing was introduced as immediately following the bisec-

tion placement, it is necessary to perform a bisection routing immediately after the quad-

risection placement also. The two-by-N bisection routing following the quadrisection

placement is necessary not only because the balancing of cell areas may change the

best routing between quadrisections evaluated in parallel, but also to optimize the rout-

ing connections following movements of cells among the quadrants. Thus, at each level

of the hierarchical decomposition, the bisection routing algorithm is effectively applied

twice.

4.4. Algorithm Outline

In Figure 4.14, a graphical description of the placement and routing algorithm is

shown. In this figure, each operation performed at each level of the hierarchical decom-

position is denoted by a set of circles between a pair of horizontal dashed lines inter-

secting the appropriate column. The circles represent instances of the operations to be

67

Initial Bisection Problem

I I i

I I I

L I. I.

I I I

I I I

I I I

I I I

F I" I-

I I I

I I I

I I I

I I !

t I"...... I"

I I I

I....... I....... I.

I I I

I I I

r r r

I I I

I I I I

2-by-N Routing Evaluation Steps

I

I

OIo

I

i
I

°,°il
I 1

,
)10I

. • ,_ i.

3'01

I I

I I

I I

I I

" "1
I0,0
i, _ i- I
IOlO I

I I I '

I I I i

II I I

I I I

I I I I I I

I I

I I

I I

I I

I I I !

I I I

I I I

I I I

I i I

! I I

I I I

! I

Figure 4.13. Two-by-N routing of a bisection region

68

Level Quadrisection Bisect Place Bisect Route

Place Route Horiz. Vert. Horiz. Vert.

O O
................ ,l,, , p,-

.......................... l............ _o_...... _o_....
©

O

© ©

O

O O 0 0

0 0 0 O

0000

0000

0 0 0 0

0000

O0 O0 O0 O0

...................................
- le-

-- 16_

 iiiiiii[iiiiiiiiiiiiiii iiiiiiii[& &i&ii&i ;i;i

2k

k

0

2

k _ 4 k
,c._._2k trees._

depth = k

2k trees

depth = k

Figure 4.14. Placement and routing decomposition

69

performed on a portion of the layout. For example, in the quadrisection placement

column, one circle at hierarchy Level 0 represents a quadrisection covering the entire

layout. Four circles at Level 1 represent the four quadrisections, each covering one-

fourth of the layout.

At each level of the decomposition, the cells are initially placed using the global X-

and Y-bisection placement algorithm. This is immediately followed by a two-by-N rout-

ing of the same regions to determine the net crossings for the boundaries of each quad-

risection placement region on that level. Next, a two-by-two routing of each quadri-

section placement region is performed, taking into account the nets crossing through

and ending in the region, to set up the current routing configuration for each net to be

used in the quadrisection cost function. The quadrisection placement algorithm is then

used to improve the current locations of the cells (provided by the previous bisection

placements). Since the previous two-by-N routing may need to be modified due to

movements of the cells inside the quadrisection region, the routing algorithm is

repeated. Finally in the hierarchy level, a two-by-two routing is applied to each quadri-

section region to fix the crossing locations of the nets on the four cut lines (A-D)

separating the four quadrants.

An example showing the operations at Level 2 in the decomposition for one region

of the layout is shown in Figure 4.15. In Figure 4.15(a), the region under consideration

is the square outlined in bold. The dashed lines denote the boundaries of the bisection

region for Level 2. The dotted lines represent the internal axis lines of the bisections

and quadrisections for Level 2. At Level 3 the dotted lines would represent the bisection

and quadrisection borders. Figures 4.15(b) and (c) show the horizontal and vertical

7O

! , !
: i

•" I :

. _ :L-,---k--

: I
i

..... ;".... r.....

! , !
I

. I :

_;_L___.
l !

..... _.o.1 t...

: I :

: !
: I :

..... :. _,°o

: i : I

: I I

....."....t....._.......... i...J.....!....
: I I

I : : I :

(a) Region under consideration

I I :

"_--.':,---i....
! !

(b) Horiz. bisection placement

r....i....L
I

I _,'7-,,k
I

I== ,.'p.==-_=

l

I

..:....f
I

' , I
I I

(c) Vert. bisection placement

o i o

o i o

o!o

: 1 I
C IOI

:jI.... !.... I

C I0

Olo i i

• ..4. I I

OlO i i
i I i

I

i I0,01
i i. r i

i IOlOI

I I I , , ,

(d) Horiz. bisection routing (e) Vert. bisection routing

Figure 4.15. Decomposition example

71

t'tOiO

010
I

(f) Quadrisection routing (g) Quadrisection placement

o i o

o i o

.... I 0 i0

(h) Horiz. bisection routing

I

oloI ,
..... I.... ÷ I

I

I

O_Ol
, I

ii II

I I I I

: _ _ I_ _
I I I I" r'"

a a _ IOlO
I I I ! I

(i) Vert. bisection routing

°:° /

(j) Quadrisection routing

Figure 4.15. Continued

72

bisections, respectively. The cells being displaced must remain between the pairs of

bold dotted lines. Figures 4.15(d) and (e) show the horizontal and vertical 2x4 routing of

the bisection regions. Each 2x4 routing requires the solution of three 2x2 routing

instances. Figure 4.15(f) shows the quadrisection routing that is necessary before

route-based quadrisection can be performed (Figure 4.15(g)). Figures 4.15(h), (i), and

(j) show the repetition of the routing operations performed earlier.

4.5. Detailed Routing

At the end of the placement and routing step, each layout block contains a set of

cells and lists of the nets crossing each of its borders. This information is then pro-

cessed into a list of cells and feedthroughs in each row and a list of net segments in

each channel. The final step of the layout process, then, is to take the cell positions and

global routing information, set up each of the channel routing problems, and solve the

channel routes using a standard channel routing algorithm. Once the channel routing

problems are set up, each is independent of the others and can be evaluated in parallel.

4.6. Parallelisms and Algorithm Complexities

The placement and routing operations described in the previous sections must be

performed in a sequential manner at each level of the hierarchical decomposition; how-

ever, within each level, we can take advantage of many parallelisms. Within the opera-

tions, shown in Figure 4.14, the instances are completely independent of each other,

except that the child XY routing instances are dependent on their respective parent

node. For example, the Level 1 quadrisection operation consists of four instances of the

quadrisection problem, each covering one fourth of the layout area. Each instance is

73

independent of the other three, since the bisection and routing steps of Level 0 have

determined the locations at which nets cross the boundaries into the layout area of the

Level 1 quadrisection instance. Furthermore, since the bisection placement instances

alter only one of a cell's two coordinates, two or more bisections overlapping in different

directions can be evaluated simultaneously. From Figure 4.14, it is clear that after the

first two hierarchy levels, the available parallelism is very great.

4.6.1. Complexity evaluation

The complexity of one pass of the quadrisection placement algorithm using the

standard cost function has been shown to be O(m) in [16], where m is the number of

pins in the circuit. Since kpass is O(1), an instance of the quadrisection placement algo-

rithm is O(m). The use of the route-based cost function will not affect the complexity

since the operations are almost identical to those for the standard cost function. Fur-

thermore, the addition of the swapping of cells does not change the overall complexity

since the operation consists of scanning the zero-gain bucket list from one gain table

until a match is found and since swapping is used only under certain conditions.

Let R be the number of layout block rows, C be the number of layout block

columns, and Z= MIN(R,C). Since the total number of quadrisection placement

instances, Nop/aco, is equal to the number of nodes in a Iog2Z level quad-tree (the

placement is performed at each hierarchy level), we have

,og___-,NQp = 4 i = .

The complexity of the quadrisection routing is O(n), where n is the number of nets, and

since the number of instances NQR is equal to two times the number of quadrisection

74

placement instances (each placement has an associated routing before and after), we

have

NOR = 2(Z3_2 1).

In the same way as the quadrisection pass, the complexity of a single bisection pass is

O(m), and the complexity of a bisection placement instance is O(m); since the number

of bisection evaluations NBp is equal to the number of nodes in a binary tree of depth

Iog2R for the X-dimension bisection routing plus the number of nodes in a binary tree of

depth Iog2C for the Y-dimension bisection routing, we have

log___-1 Iog=_R-1NBp 2 i 2 i .

This expression can be simplified to

NBp=R +C-2.

Since each level's bisection routing operation is repeated, the number of two-by-two

routing instances NBR required to evaluate all of the bisection routes is equal to twice

the number of nodes in a binary tree of binary trees. The summation can be written as

follows:

NBR = 2(NBRx + NBRY),

where

NBR X = I°g1__,._-1=

and

5
2k(2 k - 1) = -_-C 2 - C 4- -3-

Iog/___-I _ .__NBRY = 2 k (2 k - 1) = R 2 - R +

After combining the expressions we have

75

startup time for P processors is

I°gk=_3-1"/'start = TBp (k) + TBR (k) +

ToR(k)
2k + T°_(kk) + TBR(k) +

'3

NBR = -,_-(C 2 + R 2 - 3C - 3R + 10).

Note that the above expressions give approximations. The expressions become equali-

ties when R and C are powers of 2.

Since synchronization between processes is necessary after each operation (e.g.,

quadrisection placement and bisection routing) in a parallel environment, it is difficult to

evaluate exact expressions for the expected speedup as a function of the number of

processes (P). Let Top(k), ToFt(k), TBp(k), and TBR(k) be the average execution

times for each of the respective operations as a function of the hierarchical level. As the

algorithm proceeds, the size of the problem to be solved is proportional to the area

under consideration. Note that TQR(k)= TBR(k) is the time to evaluate a single two-

by-two routing instance. Let Tsync be the performance loss of time due to synchroniza-

tion as processes remove tasks from the various queues, and let Tbarr be the average

time spent waiting for other processes to finish the tasks of the current operation.

The expected time T(P)= Tstart + Tfull for P processors is the number of time

steps before all processors have a constant supply of jobs, plus the time to evaluate the

remaining tasks divided by P. The number of instances of the six operations for hierar-

chy level k is

Nop(level)= 4 k + 2(4 k) + 2 k + 2(22k - 2k),

which is the sum of the number of QP, QR, BP, and BR instances on the level. The

76

ToR(k)
+ 5Tbarr + TsyncNop(k).2k

Now let us define the time spent evaluating quadrisection (placement and routing)

operation instances on a level as

Te(k) = 4k(2TQR(k) + TQp(k)+ 3Tsync) + 2Tbarr.

Note that the synchronization operations are necessary each time a task is taken from

the queues. Further note that only two synchronization barriers are required after the

quadrisection operations since the quadrisection routing immediately preceding the

quadrisection placement can be merged for execution in the same task as the place-

ment. The time spent evaluating bisection (placement and routing) operation instances

on a level for one dimension is

TB(k) = 2k(TBp(k) + Tsync) + Tbarr + (22k - 2k)(TBR(k) + Tsync) + 2Tbarr.

Note in this case, syncronization operations are required for removing each task from

the queues as well as a synchronization barrier following each bisection operation.

Thus, the time spent in full parallel execution is

1 ioa,Z 1 log c-I 1 Iog_R-1
Flu, = --p.k=_og2pTo(k) + -'P'k=_,P I B(t() + -.p-k=_,pTB (k),

and thus the execution time for P processors is

Tp = Tstart + Tfu//.

The complexity of the tasks is proportional to the area of the evaluation. For QP

and QR evaluations, T(k + 1)= _T(k), and for BP and BR evaluations,

= ½T(k). In other words, the magnitude of time spent at each hierarchicalT(k + 1)

level is approximately the same. Therefore, To can be rewritten as

TQ(k)=(2TQR(O) + TQp(O) + 3Tsync),

77

and TB can be rewritten as

TB(k) = (TBp(O) + Tsync) + 2k(TBR(O) + Tsync).

Finally, the expected speedup Sp for P processors is

T1
Sp = -TFp"

4.7. Results

There are many aspects of the parallel placement and routing algorithm which

could be evaluated. In this section we examine a few of these aspects including the fol-

lowing: the effect of route-based quadrisection, the effect of bisection for initial place-

ment before quadrisection, the solution quality, and the parallel performance on a

number of example circuits.

4.7.1. Implementation

The parallel algorithm for placement and routing has been implemented in the

PARAGRAPH (PARallel Algorithm for Global Routing and Placement Hierarchically)

system using approximately 12,000 lines of C language code. The code has been com-

piled for various machines, but the target machine of particular interest is an Encore

Multimax. The Multimax features eight NS32532 processors (rated at 5 MIPS) utilizing

up to 64 Megabytes of shared memory. The code is written to make use of the fork()

and join() function calls for creating slave processes, share_mallocO and the shar data

type for creating and using shared memory, and the semaphore function calls to provide

a locking mechanism during critical sections of code (especially in the scheduler). All

queue modifications require critical sections of code to prevent multiple processes from

simultaneously accessing the data.

78

In the parallel prccessing mode, each operation type is provided a unique task

queue. As tasks are created, they are placed on the end of the proper task queue and

await execution by any of the processors that become available. Synchronization

among the processes between operations is achieved by having the master process

monitor (MP) the current task queue, monitor the state of idleness of each slave process

(SP), and control an "operation indicator." Since there are dependencies from one

operation to the next, it is necessary to synchronize after every operation to guarantee

the correctness of solution. For example, the quadrisection route depends on the

preceding bisection route in order to properly establish the sets of nets crossing its

boundaries. After synchronization, the next operation is enabled by the MP through the

operation indicator, and waiting processes are allowed to take tasks from the new

operation's task queue.

Figure 4.16 provides a high-level look at the commands for the master process

(MP) and slave processes (SP). Note that in this figure we have collapsed the quadri-

section routing (used with route-based quadrisection before the quadrisection place-

ment) into a single quadrisection routing and placement (QRP) operation. The SP are

continually checking the various queues for the quadrisection routing and placement

(QRP), bisection routing (BR), quadrisection routing (QR), and bisection placement (BP)

tasks. Along with executing any tasks available, the MP is responsible for creating the

initial top-level task, making the transitions between the operation TYPES using the

shared operation indicator variable, and eliminating the SP after completion of the place-

ment and routing algorithm.

79

J_SEEEL _SLAV_E_

Initialize();

DoFork(NumProcs-1);

SetTopLevel0;

Level = 0;

TYPE = QRP;

WHILE (!DONE) {

WH ILL (GetTask(QRP))

Eval(QRP,Level);

BARRIER(TYPE = BR);

IF (! TopLev) {

WHILE (GetTask(BR))

Eval (BR,Level);

BARRiER(TYPE = QR);

WHILE (GetTask(QR))

Eval(QR,Level);

Level++;

BARRIER(TYPE = BP);

WHILE (GetTask(BP))

Eval(BP,Level);

BARRIER(TYPE - BR);

WHILE (GetTask(BR))

Eval(BR,Level);

BARRIER(TYPE -- QRP);

DONE = ChecklfDone0;

Initialize();

WHILE (TRUE){

If (GetTask(TYPE))

EvaI(TYPE,Level);

}

(;)RF

-r

Task Queues

BR QR BP

T -r _-"

BR

I ..,._........._
i

T

)

DoJoin0;

Figure 4.16. Parallel placement and routing pseudocode

80

4.7.2. Benchmark circuits

The parallel placement and routing algorithm was evaluated on six placement prob-

lems. Two of the circuits are the Primary1 (P1) and Primary2 (P2) benchmarks from the

Microelectronics Center of North Carolina (MCNC). The remaining four are other stan-

dard cell circuits of varying sizes. Table 4.1 provides the number of cells, the number of

pads, and the number of nets in each of the circuits.

4.7.3. Evaluation of net cost function

In the following tables, we evaluate the effect of the various algorithm options dis-

cussed in the chapter on the placement quality. The total length of the net segments in

the channels is denoted as WL, the number of routing tracks as determined by summing

up the maximum channel density for all channels is denoted as TC, and the layout area

of the rows of cells and the channels is denoted as LA.

The first comparison we make is among the results from different executions of

PARAGRAPH using different weightings of the horizontal and vertical net segments.

The net weightings are used in the quadrisection and bisection placement operations to

minimize the net cut length. Table 4.2 compares the results for seven combinations of

Table 4.1. Benchmark statistics

Circuit
Zl
Z2
Z3
Z4
P1
P2

Cells

469
1691
2776

2976
752

2907

Pads

37
61
64
62
81

107

Nets
494

1979
3258
4207
1185
3710

81

cost parameters for the six example circuits. In this set of experiments, the route-based

cost function, initial placement by bisection, and cell swapping methods were all enabled

during the executions. From this table, we notice that the results vary widely for the

various combinations, depending on the circuit. Therefore, we are unable to set forth a

combination that clearly outperforms the others.

Table 4.2. Comparison of net cost parameters

Circuit HW VW

zl 1 1 563
2 7 518
5 2 570
9 2 594

z2 1 1 14540
2 7 17272
5 2 15149
9 2 15174

z3 1 1 9970
2 7 13224
5 2 7681
9 2 8197

z4 1 1 22113
2 7 9707
5 2 15435
9 2 20165

pl 1 1 1856
2 7 1917
5 2 2331
9 2 1929

p2 1 1 138O0
2 7 16O80
5 2 16958
9 2 16282

WL TC LA

218
201
230

227

1305
1388
1365
1405

1426
1716
1223
1165

1881
1457
1769
1879
381

382
392
405

1389
1471
1536
1539

16256
15787
16910

16662
194370
232974
206899
199214

69092
84252
53442
54453

93690
63789
89846
94198
28195
28531
29293
29576

111703
116653
121556
118352

82

4.7.4. Evaluation of initial placement by global bisection

Table 4.3 contrasts the quality of the final results, with and without the use of the

restricted global bisection algorithm as an initial placement for the quadrisection algo-

rithm. For all executions in this set of experiments, the net cost parameters were identi-

cal, route-based cost functions were used, and cell swappiTlg was enabled. From this

table, it is very clear that the bisection placement algorithm is important in setting up the

quadrisection placement since it considers nets and cells across the width or height of

the layout.

4.7.5. Evaluation of cell swapping

A comparison is made in Table 4.4 of the quality of the placement using cell swap-

ping with placement without cell swapping (displacement odly). Again, the measure of

quality used for the comparison is the total wirelength, track count, and layout area. For

all executions in this set of experiments, the net cost parameters were identical, bisec-

tioning was used for the initial placement of the cells, and route-based cost functions

were used. The table shows that in nearly every case, the placement algorithm allowing

Table 4.3. Initial placement alternatives comparison

With Bisect Placement Without Bisect Placement

Circuit WL TC LA LA

zl
z2
z3
z4

pl
p2

518
17272

7934
9707
1918

16080

201
1388
1295
1457

382
1471

15787
232974

57320
63789
28531

116653

WL TC

903 291
19730 1474
35038 2411
33333 2148

2460 440
32478 2O93

20807
259812
127789
109720

32917
148902

83

Table 4.4. Effect of cell swapping

With Cell Swapping Without Cell Swapping

Circuit WL TC LA LA
zl
z2
z3
z4
pl
p2

518
17272
7934
9707
1917

16080

201
1388
1295
1457
382

1471

15787
232974
57320
63789
28531

116653

WL TC
549 221

15022 1359
9119 1515

12359 1534
2897 476

27630 2043

16483
203940
66344
81264
36579

135304

cell swapping achieves a better result than the placement depending on the displace-

ment of cells.

4.7.6. Route-based placement evaluation

A comparison was made earlier in the chapter between standard quadrisection cost

function and a cost function that is based on the actual routing of the nets. In Table 4.5,

we compare the two cost functions based on the wirelength, the track count, and the

final layout area. For this set of experiments, the net cost parameters were identical,

bisectioning was used for the initial placement of the cells, and cell swapping was

Table 4.5. Route-based vs. standard cost functions

Circuit

zl
z2
z3
z4

pl
p2

Route-Based Cost Standard Cost

WL(xl000)
518

17272
7934
9707
1918

16080

TC

201
1388
1295
1457

382
1471

LA(xl000)
15787

232974
57320
63789
28531

116653

WL

567
16873
8751

14416
1928

15705

TC

224
1392
1534
1777

388
1464

LA

17252
222567

69953
82637
28341

117018

84

enabled. From the table, it is clear that in the majority of cases the route-based place-

ment performs better than the standard cost function. This is especially important for

layouts with very limited routing resources.

4.7.7. Comparison to TimberWolf 5,4

Finally, Table 4.6 compares the solution quality of the sequential algorithm for

placement and routing (PARAGRAPH) versus the Timberwolf 5.4 placement and routing

package. All of these experiments were made on a single processor of the Encore Mul-

timax, and the suggested parameters were supplied to TimberWolf. For PARAGRAPH,

bisectioning was used for the initial cell placement, route-based cost functions were

used, and cell swapping was enabled. The table shows the runtime and final layout

area measurement for the example circuits along with the uniprocessor execution time

as measured by getrusageO for TimberWolf and elapsed real time (should be greater

than or equal to the getrusageO values) for PARAGRAPH. The runtime (RT) values are

measured in seconds and the wire length (WL) and layout area (LA) are to be multiplied

by 1000. The TimberWolf placement algorithm is based on simulated annealing [21]

Table 4.6. Comparison to TimberWolf

TimberWolf 5.4

Circuit

zl
z2
z3
z4

pl
p2

RT

1913
14977

31713
4636

30132

WL TC

208 90 10697
3957 558 94346

2054 597 14100
607 169 16121

3821 487 58517

PARAGRAPH

LA RT WL TC LA

124
1648
3062
4215

270
3988

518
14540

7934
9707
1856

13800

201
1305
1295
1457

381
1389

15787
194370

57320
63789
28195

111703

85

and the global routing algorithm is based on Steiner tree minimization [37]. TimberWolf

has been improved over the last several years to the point where it produces very good

results and has become a standard for layout quality comparison. Unfortunately, the

runtime for TimberWolf often exceeds several hours for average-sized circuits.

According to the table, TimberWolf 5.4 is able to produce extremely high-quality

placements, but requires a large amount of processor time. The blank entries in the

table for circuit z3 are due to the fact that we were unable to place the specific circuit

using TimberWolf 5.4. Although the solution quality of our algorithm is less than Tim-

berWolf5.4 for these example circuits, we feel that our approach has a number of

benefits. First of all, the execution time for a combined placement and routing algorithm

is nearly an order of magnitude less than TimberWolf when run in the uniprocessor

mode. Second, there are a number of enhancements that can be made to our algorithm

and implementation to improve the quality of the results. Suaris and Kedem [16] have

already demonstrated that the quadrisection approach to cell placement is very competi-

tive with simulated annealing techniques and, with modifications to our implementation

and the enhancements we have proposed, we expect to achieve similar results. Third,

in any hierarchical routing algorithm, under-estimations or over-estimations of the avail-

able routing resources at the topmost hierarchy levels can adversely affect the ability of

the router to achieve good results at lower levels of the hierarchy. Addressing this prob-

lem and making changes in the algorithm for assigning the linear program variables to

each net configuration should provide a fair improvement in the global routing algorithm,

and in our results. Fourth, hierarchical techniques are well-suited for larger and larger

circuits of the future and have been used throughout our algorithm. And finally, as a

86

result of the decomposition methods we employed, we have been able to develop a

parallel algorithm for placement and routing. Through this parallelism, we are able to

reduce the runtime further.

4.7.8. Process efficiency

One measure of how well the parallel processes are utilized is the process

efficiency. The efficiency of a process is defined to be the ratio of time spent solving the

problem over the total amount of time the process was dedicated to the problem. We

measured the amount of time each process was spending executing the algorithm and

the amount of time the process was spending waiting for other processes to finish their

tasks. Moments of waiting occur primarily at two. places. The first is during the topmost

decomposition levels in which the number of parallel tasks available is less than the

number of processors available. The second place is at the barrier synchronizations

between operations. If processor loads are not balanced, one task may hold up the rest

if it takes longer to complete. Table 4.7 gives some runtime data on the efficiency of

various numbers of processes for the example circuits. In this table, the minimum, max-

imum, and average process efficiency values are listed. The wide ranges of maximum

to minimum efficiency is due primarily to the top-level decomposition steps.

Figure 4.16 shows the effect of the top-level decomposition steps on parallel per-

formance. The data for this figure were taken from uniprocessor and 8-processor exe-

cutions of the parallel placement and routing algorithm. The figure plots the percentage

of the total execution time spent at each level of the hierarchy. The plot of the unipro-

cessor numbers show that due to the rapid expansion of the execution tree, the majority

of execution time is spent near the bottom levels of the decomposition. However, the

87

Table 4.7. Process efficiency measurements

Number of

Circuit Processes
zl 2
zl 4
zl 8
z2 2
z2 4
z2 8
z3
z3
z3

2
4
8

z4 2
z4 4
z4 8
pl
pl
pl
p2
p2
p2

2
4
8
2
4
8

Process Efficiency

Min. Max. Ave.
0.740 0.946 0.84
0.501 0.867 0.63
0.242 0.819 0.39
0.911 0.981 0.95
0.796 0.955 0.85
0.549 0.799 0.66
0.835 0.969 0.91
0.614 0.789 0.73
0.336 0.753 0.47
0.754 0.979 0.86
0.636 0.952 0.76
0.379 0.861 0.51
0.853 0.980 0.91
0.725 0.908 0.79
0.442 0.816 0.56
0.884 0.915 0.90
0.684 0.923 0.79
0.423 0.782 0.56

88

Percentage
of Total

Execution

0.35

0,3 m

0.25 -

0.2 w

0.15 -

0.1 m

0.05 -

0

I_i One Process

P "3

L .J Eight Processes

P-I r-I

i

i

i

i

i

i

I ' iI

i !
I

I I

0 1

r -i

I

I

I

I

I

I

I

I

I

I

I

I

I '
2 3

r- 7

i i

i I

i i

i i

i 1

i I

1

i i

' i

I

I

i

I

I

i

i

i

i

i

f

I- "G

I

4

Hierarchy Level Number

Figure 4.17. Execution time percentages

parallel processor numbers show that the top-level evaluations make up a large percen-

tage of the execution time when the parallelisms at the lower decomposition levels are

exercised. Although the top-level evaluations make up only five percent of the execu-

tion time for the uniprocessor case, they make up more than 20 percent of the execution

time for eight processes; as the number of processes increases, the percentage will

continue to grow.

89

4.7.9. Speedup evaluation

Table 4.8 provides information on the attainable speedups for the example circuits

using a variable number of processors. The low speedup values in Table 4.8 are

expected from the data presented in Table 4.7 and Figure 4.17. To improve the

speedup and processor efficiency values for large numbers of processors, it is important

to eliminate load imbalances among processors and to partition the tasks in the top-level

decomposition steps into subtasks that may be executed in parallel. Another area of

Table 4.8. Speedup measurements

Circuit

zl
zl
zl
zl

z2
z2
z2

z2

z3
z3
z3
z3

z4
z4
z4

z4

Number of
Processes

1
2
4
8

1
2
4

8
1
2
4
8

1
2
4

8

Runtime

(s)
124

69
47
37

1648
1016

721

599
3062
1900
1318
1078
4215

2676
1811
1496

Speedup

1.0
1.8
2.6
3.4

1.0
1.6
2.3
2.8

1.0
1.6
2.3
2.8

1.0
1.6
2.3

2.8

p2
p2
p2
p2

3988
2655
1857
1555

1
2
4
8

1.0
1.5
2.1
2.6

m

pl 1 270 1.0
pl 2 160 1.7
pl 4 109 2.5
pl 8 95 2.8

9O

further investigation is the effect of eliminating the scheduling barriers so that processes

need not wait for other processes to finish before continuing execution.

CHAPTER 5.

91

CONCLUSIONS

5.1. Contributions

In this thesis we have presented a new parallel algorithm for global routing and a

new parallel algorithm for simultaneous placement and routing which incorporates the

first algorithm. We have demonstrated an algorithm for global routing which is not only

fast and efficient, but also readily parallelizable. We have shown high processor utiliza-

tion on a shared-memory multiptocessor and results that are competitive with well-

known global routing programs.

We have also presented a new algorithm for simultaneous placement and global

routing that is extremely well-suited for parallel processing. We have discussed

enhancements over existing placement and routing algorithms and have demonstrated

their effectiveness. Furthermore, we have verified the parallel properties of our algo-

rithm with an implementation on a shared-memory multiprocessor.

5.2. Future Directions

In this thesis, we have laid the groundwork for further research into the placement

and routing problems and methods for developing parallel algorithms to solve these

problems. Our focus in this research has been to develop a hierarchical decomposition

scheme so that the subproblems are completely independent of each other and can be

92

evaluated in parallel. We have found that at the higher levels of any decomposition

scheme, it may be necessary to develop ways to partition the relatively few tasks so that

all processing resources may be fully utilized. To achieve this parallelism at the top lev-

els, the algorithm may have to allow for concurrent evaluation of interdependent tasks.

We feel there are a number of enhancements and extensions to our algorithm

which will provide substantial improvements in the quality of our results. Modifications

to the capacity estimation algorithms and the methods used to make the net assign-

ments following the linear program solution in the global router should improve the qual-

ity of the final routing. A bottom-up placement and routing adjustment phase can also

be employed which (in parallel) considers small regions for local improvements. Follow-

ing the local improvements, small regions are merged and the local improvement phase

is repeated for the larger regions. This process would be repeated until the region

includes the entire layout.

Another direction of interest is to evaluate the algorithmic changes necessary for

the solution of placement and routing problems for other design styles such as Macro

Cell and Sea-of-Gates. Furthermore, a more completely interfaced final routing should

be developed to complete the parallel package. The current implementation of the algo-

rithms is intended for shared-memon] multiprocessors. There are a number of issues to

consider for implementation on different parallel architectures (e.g., message-passing

multiprocessors and networks of workstations).

93

REFERENCES

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

P. Banerjee, "The use of parallel processing in VLSI computer-aided design
applications," ICCAD-88 Tutorial, also Tech. Rep. no. CSG-104, Coordinated
Science Laboratory, Univ. of Illinois, Urbana, IL, May 1988.

R. Jayaraman and R. A. Rutenbar, "Floorplanning by annealing on a hypercube
multiprocessor," Proc. Int. Conf. Computer-Aided Design, pp. 346-349, Nov.
1987.

K. P. Belkhale and P. Banerjee, "PACE2: An improved parallel VLSI extractor
with parametric extraction," Proc. Int. Conf. Computer-Aided Design, pp. 526-
530, Nov. 1989.

B. Tonkin, "Circuit extraction on a message-based multiprocessor," Proc. 27th
Design Automat. Conf., pp. 260-265, June 1990.

G. G. Hung, Y. C. Wen, K. Gallivan, and R. Saleh, "Parallel circuit simulation
using hierarchical relaxation," Proc. 27th Design Automat. Conf., pp. 394-399,
June 1990.

G. C. Yang, "PARASPICE: A parallel circuit simulator for shared-memory
multiprocessors," Proc. 27th Design Automat. Conf., pp. 400-405, June 1990.

K. Subramanian and M. R. Zargham, "Distributed and parallel demand driven
logic simulation," Proc. 27th Design Automat. Conf., pp. 485-490, June 1990.

S. Patil and P. Banerjee, "A parallel branch and bound approach to test
generation," IEEE Trans. Computer-Aided Design, vol. 9, no. 3, pp. 313-322,
Mar. 1990.

T. Blank, "A survey of hardware accelerators used in computer-aided design,"
IEEE Design Test, pp. 21-39, Aug. 1984.

B. T. Preas and P. G. Karger, "Automatic placement: A review of current
techniques," Proc. 23rd Design Automat. Conf., pp. 622-629, June 1986.

M. R. Hartoog, "Analysis of placement procedures for VLSI standard cell layout,"
Proc. 23rd Design Automat. Conf., pp. 314-319, June 1986.

M. Hanan and J. M. Kurtzberg, "Placement techniques," in Design Automation of
Digital Systems: Theory and Techniques. M.A. Breuer, Ed., Prentice-Hall, 1972,
pp. 213-282.

M. A. Breuer, "Min-cut placement," J. Design Automat. Fault Tol. Comp., vol. 1,
pp. 343-382, Oct. 1977.

B. W. Kernighan and S. Lin, "An efficient heuristic for partitioning graphs," Bell
Syst. Tech. J., vol. 49, pp. 291-307, Feb. 1970.

94

[27]

[28]

[29]

[30]

[15] A.E. Dunlop and B. W. Kernighan, "A procedure for placement of standard cell
VLSl circuits," IEEE Trans. Computer-Aided Design, vol. CAD-4, no. 1, pp. 92-

98, Jan. 1985.

[16] P.R. Suaris and G. Kedem, "An algorithm for quadrisection and its application to
standard cell placement," IEEE Trans. Circuits Syst., vol. 35, no. 3, pp. 294-303,
Mar. 1988.

[17] J. P. Blanks, "Near-optimal placement using a quadratic objective function,"
Proc. 21st Design Automat. Conf., pp. 602-615, June 1985.

[18] C.K. Cheng and E. S. Kuh, "Module placement based on resistive network
optimization," IEEE Trans. Computer-Aided Design, vol. CAD-3, no. 3, pp. 218-

225, July 1984.

[19] Y.H. Hu and S. J. Chen, "GM_Plan: A gate matrix layout algorithm based on
artificial intelligence planning techniques," IEEE Trans. Computer-Aided Design,
vol. 9, no. 8, pp. 836-845, Aug. 1990.

[20] R.S. Tsay, E. S. Kuh, and C. P. Hsu, "PROUD: A fast sea-of-gates placement
algorithm," Proc. 25th Design Automat. Conf., pp. 318-323, June 1988.

[21] C. Sechen, VLSI Placement and Global Routing using Simulated Annealing.
Boston: Kluwer Academic Publishers, 1988.

[22] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated
annealing," Science, vol. 220, pp. 671-680, May 1983.

[23] P. Siarry, L. Bergonzi, and G. Dreyfus, "Thermodynamic optimization of block
placement," IEEE Trans. Computer-Aided Design, vol. CAD-6, no. 2, pp. 211-
221, Mar. 1987.

[24] L.K. Grover, "Standard cell placement using simulated sintering," Proc. 24th
Design Automat. Conf., pp. 56-59, June 1987.

[25] R.M. Kling and P. Banerjee, "ESP: Placement by simulated evolution," IEEE
Trans. Computer-Aided Design, vol. CAD-8, no. 2, pp. 245-256, Mar. 1989.

[26] R.M. Kling, "Optimization by simulated evolution and its application to cell
placement," Tech. Rep. no. CRHC-90-7, Coordinated Science Laboratory, Univ.
of Illinois, Urban& IL, Aug. 1990.

P. Banerjee, M. H. Jones, and J. S. Sargent, "Parallel simulated annealing
algorithms for standard cell placement on hypercube multiprocessors," IEEE
Trans. ParallelandDist. Syst., vol. 1, no. 1, pp. 91-106, Jan. 1990.

J. Sargent and P. Banerjee, "A parallel row-based algorithm for standard cell
placement with integrated error control," Proc. 26th Design Automat. Conf., pp.
590-593, June 1989.

C. P. Ravikumar and S. Sastry, "Parallel placement on hypercube architecture,"
Proc. Int. Conf. Parallel Process., Vol. III, pp. 97-101, 1989.

A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, "A parallel simulated
annealing algorithm for the placement of macro-cells," Proc. Int. Conf.
Computer-Aided Design, pp. 30-33, Nov. 1986.

95

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

S. A. Kravitz and R. A. Rutenbar, "Placement by simulated annealing on a

multiprocessor," IEEE Trans. Computer-Aided Design, vol. CAD-6, no 4, pp.
534-549, June 1987.

A. Casotto and A. Sangiovanni-Vincentelli, "Placement of standard cells using

simulated annealing on the Connection Machine," Proc. Int. Conf. Computer-
Aided Design, pp. 350-353, 1987.

C. P. Wong and R. D. Fiebrich, "Simulated annealing-based circuit placement
algorithm on The Connection Machine System," Proc. Int. Conf. Computer

Design, pp. 78-82, 1987.

J. S. Rose, D. R. Blythe, W. M. Snelgrove, and Z. G. Vranesic, "Fast, high quality

VLSl placement on a MIMD multiprocessor," Proc. Int. Conf. Computer-Aided
Design, pp. 42-45, Nov. 1986.

K. Ueda, T. Komatsubara, and T. Hosaka, "A parallel processing approach for

logic module placement," IEEE Trans. Computer-Aided Design, vol. CAD-2, no.
1, pp. 39-47, Jan. 1983.

R. M. Kling and P. Banerjee, "Concurrent ESP: A placement algorithm for
execution on distributed processors," Proc. Int. Conf. Computer-Aided Design,
pp. 354-357, 1987.

K. W. Lee and C. Sechen, "A new global router for row-based layout," Proc. Int.
Conf. Computer-Aided Design, pp. 180-183, Nov. 1988.

J. Cong and B. Preas, "A new algorithm for standard cell global routing," Proc.
Int. Conf. Computer-Aided Design, pp. 176-179, Nov. 1988.

G. Meixner and U. Lauther, "A new global router based on a flow model and

linear assignment," Proc. Int. Conf. Computer-Aided Design, pp. 44-47, Nov.
1990.

R. Nair, "A simple yet effective technique for global wiring," IEEE Trans.
Computer-AidedDesign, vol. CAD-6, no. 2, pp. 165-172, Mar. 1987.

M. P. Vecchi and S. Kirkpatrick, "Global wiring by simulated annealing," IEEE
Trans. Comput., vol. 7, no. 4, pp. 215-222, Oct. 1983.

N. Hasan and C. L. Liu, "A force-directed global router," Pro& Stanford Conf.

Advanced Research in VLSi, pp. 135-150, 1987.

C. D. Hechtman and J. J. Lewandowski, "A flux directed approach to a wire

routing problem," IEEE VLSI Tech. Bull., vol. 4, no. 3/4, pp. 124-138, Sept./Dec.
1989.

M. Burstein and R. Pelavin, "Hierarchical wire routing," IEEE Trans. Computer-

Aided Design, vol. CAD-2, no. 4, pp. 223-234, Oct. 1983.

M. Marek-Sadowska, "Global router for gate array," Proc. Int. Conf. Computer
Design, pp. 332-337, Oct. 1984.

W. K. Luk, D. T. Tang, and C. K. Wong, "Hierarchical global wiring for custom
chip design," Proc. 23rd Design Automat. Conf., pp. 481-489, June 1986.

96

[47]

[48]

[49]

[5O]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

R. Nair, S. J. Hong, S. Liles, and R. Villani, "Global wiring on a wire routing
machine," Proc. 19th Design Automat. Conf., pp. 224-231, June 1982.

T. Watanabe, H. Kitazawa, and Y. Sugiyama, "A parallel adaptable routing
algorithm and its implementation on a two-dimensional array processor," IEEE
Trans. Computer-Aided Design, vol. CAD-6, No 2, pp. 241-250, Mar. 1987.

O. A. Olukotun and T. N. Mudge, "A preliminary investigation into parallel routing
on a hypercube computer," Proc. 24th Design Automat. Conf., pp. 814-820,
June 1987.

Y. Won and S. Sahni, "Maze routing on a hypercube multiprocessor computer,"
Proc. Int. Conf. Parallel Process., pp. 630-637, Aug. 1987.

Jonathan Rose, "LocusRoute: A parallel global router for standard cells," Proc.
25th Design Automat. Conf., pp. 189-195, June 1988.

R. J. Brouwer and P. Banerjee, "PHIGURE: A Parallel Hierarchical Global
Router," Proc. 27th Design Automat. Conf., pp. 650-653, June 1990.

A. A. Szepieniec, "Integrated placement/routing in sliced layouts," Proc. Design
Automat. Conf., pp. 300-307, 1986.

E. Shragowitz, J. Lee, and S. Sahni, "Placer-router for sea-of-gates design style,"
Proc. Int. Conf. Computer Design, pp. 330-335, 1987.

W. M. Dai and E. S. Kuh, "Simultaneous floor planning and global routing for
hierarchical Building-Block Layout," IEEE Trans. Computer-Aided Design, vol.
CAD-6, no. 5, pp. 828-837, Sept. 1987.

M. Igusa, M. Beardslee, and A. Sangiovanni-Vincentelli, "ORCA: A sea-of-gates
place and route system," Proc. 26th Design Automat. Conf., pp. 122-127, June
1989.

P. R. Suaris and G. Kedem, "A quadrisection-based combined place and route
scheme for standard cells," IEEE Trans. Computer-Aided Design, vol. 8, no. 3,
pp. 234-244, Mar. 1989.

R. S. Garfinkel and G. L. Nemhauser, Integer Programming. New York, NY:
John Wiley and Sons, Inc., 1972, pp. 154-165.

C. M. Fiduccia and R. M. Mattheyses, "A linear-time heuristic for improving
network partitions," Proc. 19th Design Automat. Conf., pp. 175-181, 1982.

97

VITA

Randall Brouwer received the B.S. degree in Engineering from Calvin College,

Grand Rapids, Michigan in 1985. He received the M.S. degree in Electrical Engineering

from the University of Illinois, Urbana, Illinois in 1988. He is currently a candidate for the

Ph.D. degree in Electrical Engineering at the University of Illinois, Urbana, Illinois.

From 1984 to 1985, Mr. Brouwer was a laboratory assistant for the Engineering

Department at Calvin College. During the summer of 1985, he worked at Smith's Indus-

tries in Grand Rapids, MI (formerly Lear Siegler, Inc.), developing software for testing

memory boards. During the Spring of 1985, Mr. Brouwer worked as a teaching assis-

tant for the Department of Electrical Engineering at the University of Illinois. From the

Fall of 1985 to the present, he has been working as a research assistant in the Coordi-

nated Science Laboratory at the University of Illinois.

His research interests include Computer-Aided Design of Integrated Circuits, paral-

lel processing and the development of parallel algorithms for various applications, and

high-performance multiprocessor systems.

